Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Christian Stiegler; Franziska Koebsch; Ashehad Ashween Ali; Tania June; +5 Authors

    AbstractThe rapidly growing areal extent of oil palm (Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N2O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N2O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N2O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N2O, with average emission of 0.32 ± 0.003 g N2O‐N m−2 year−1 (149.85 ± 1.40 g CO2‐equivalent m−2 year−1). Compared to the EC‐based N2O flux, average chamber‐based soil N2O fluxes (0.16 ± 0.047 g N2O‐N m−2 year−1, 74.93 ± 23.41 g CO2‐equivalent m−2 year−1) are significantly (~49%, p < 0.05) lower, suggesting that important N2O pathways are not covered by the chamber measurements. Conventional chamber‐based N2O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N2O budget of oil palm plantations. Diel pattern of N2O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (>2 days), soil temperature and water‐filled pore space gained importance on N2O flux variation. These results suggest a plant‐mediated N2O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N2O emissions from oil palm cultivation through appropriate site selection and management.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Christian Stiegler; Franziska Koebsch; Ashehad Ashween Ali; Tania June; +5 Authors

    AbstractThe rapidly growing areal extent of oil palm (Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N2O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem‐scale N2O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point‐scale soil N2O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N2O, with average emission of 0.32 ± 0.003 g N2O‐N m−2 year−1 (149.85 ± 1.40 g CO2‐equivalent m−2 year−1). Compared to the EC‐based N2O flux, average chamber‐based soil N2O fluxes (0.16 ± 0.047 g N2O‐N m−2 year−1, 74.93 ± 23.41 g CO2‐equivalent m−2 year−1) are significantly (~49%, p < 0.05) lower, suggesting that important N2O pathways are not covered by the chamber measurements. Conventional chamber‐based N2O emission estimates from oil palm up‐scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N2O budget of oil palm plantations. Diel pattern of N2O fluxes showed strong causal relationships with photosynthesis‐related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (>2 days), soil temperature and water‐filled pore space gained importance on N2O flux variation. These results suggest a plant‐mediated N2O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N2O emissions from oil palm cultivation through appropriate site selection and management.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph