Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Von Cossel; F. Lebendig; M. Müller; C. Hieber; +3 Authors

    Miscanthus (ANDERSSON) is considered a promising perennial industrial crop for providing biomass in a growing bioeconomy. One approach to increasing the biodiversity-enhancing ecosystem services of Miscanthus is the co-cultivation of flower-rich native wild plant species (WPS), for example, the perennial WPS common tansy (Tanacetum vulgare L.) and mugwort (Artemisia vulgaris L.), as well as the biennial WPS wild teasel (Dipsacus fullonum L.) and yellow melilot (Melilotus officinalis L.). This study tested whether these selected WPS would be as suitable for combustion as Miscanthus, in this case the sterile hybrid Miscanthus x giganteus Greef et Deuter, allowing for a mixing of the biomasses. By doing so, no additional value chain (e.g. biogas production) would be necessary to economically exploit the diversification of the agricultural system for bioenergy production. Feedstock samples of Miscanthus and the four above-mentioned WPS from a field trial in southwest Germany were used to investigate the combustion characteristics as well as the higher heating value (HHV). It was found that all WPS exhibited better combustion properties than Miscanthus with respect to ash melting behavior at similar HHVs of 16.3–17.5 MJ kg−1. From an admixture of >30% WPS to the Miscanthus biomass, a significant increase in the ash melting temperature by 20% from 1000 to 1200 °C was shown. Thus, the mixture of WPS and Miscanthus could potentially improve the combustion quality, leading to reduced costs in the incineration plant operation process. However, the reduced costs of incineration should be greater than the loss in productivity due to the lower biomass yields from the WPS. This is highly dependent on the particular site conditions and the establishment success of the WPS and needs to be investigated in long-term studies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Von Cossel; F. Lebendig; M. Müller; C. Hieber; +3 Authors

    Miscanthus (ANDERSSON) is considered a promising perennial industrial crop for providing biomass in a growing bioeconomy. One approach to increasing the biodiversity-enhancing ecosystem services of Miscanthus is the co-cultivation of flower-rich native wild plant species (WPS), for example, the perennial WPS common tansy (Tanacetum vulgare L.) and mugwort (Artemisia vulgaris L.), as well as the biennial WPS wild teasel (Dipsacus fullonum L.) and yellow melilot (Melilotus officinalis L.). This study tested whether these selected WPS would be as suitable for combustion as Miscanthus, in this case the sterile hybrid Miscanthus x giganteus Greef et Deuter, allowing for a mixing of the biomasses. By doing so, no additional value chain (e.g. biogas production) would be necessary to economically exploit the diversification of the agricultural system for bioenergy production. Feedstock samples of Miscanthus and the four above-mentioned WPS from a field trial in southwest Germany were used to investigate the combustion characteristics as well as the higher heating value (HHV). It was found that all WPS exhibited better combustion properties than Miscanthus with respect to ash melting behavior at similar HHVs of 16.3–17.5 MJ kg−1. From an admixture of >30% WPS to the Miscanthus biomass, a significant increase in the ash melting temperature by 20% from 1000 to 1200 °C was shown. Thus, the mixture of WPS and Miscanthus could potentially improve the combustion quality, leading to reduced costs in the incineration plant operation process. However, the reduced costs of incineration should be greater than the loss in productivity due to the lower biomass yields from the WPS. This is highly dependent on the particular site conditions and the establishment success of the WPS and needs to be investigated in long-term studies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph