- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:The Royal Society Maysa Ito; Tamar Guy-Haim; Yvonne Sawall; Markus Franz; Björn Buchholz; Thomas Hansen; Philipp Neitzel; Christian Pansch; Tobias Steinhoff; Martin Wahl; Florian Weinberger; Marco Scotti;Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups’ biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers’ feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers’ acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development. This article is part of the theme issue ‘Connected interactions: enriching food web research by spatial and social interactions’.
figshare arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:[no funder available]Christian Pansch; Marco Scotti; Francisco R. Barboza; Balsam Al‐Janabi; Janina Brakel; Elizabeta Briski; Björn Bucholz; Markus Franz; Maysa Ito; Filipa Paiva; Mahasweta Saha; Yvonne Sawall; Florian Weinberger; Martin Wahl;doi: 10.1111/gcb.14282
pmid: 29682862
AbstractClimate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel “near‐natural” outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community‐level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United Kingdom, United Kingdom, Germany, United KingdomPublisher:Wiley Authors: Francisco R. Barboza; Maysa Ito; Jennifer C. Nascimento-Schulze; Jennifer C. Nascimento-Schulze; +12 AuthorsFrancisco R. Barboza; Maysa Ito; Jennifer C. Nascimento-Schulze; Jennifer C. Nascimento-Schulze; Miriam Beck; Mahasweta Saha; Mahasweta Saha; Mahasweta Saha; Paul J. Somerfield; Janina Brakel; Janina Brakel; Balsam Al-Janabi; Yvonne Sawall; Stina Jakobsson Thor; Florian Weinberger; Christian Pansch;doi: 10.1111/gcb.14801
pmid: 31670451
AbstractMarine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near‐natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late‐spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short‐term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2019Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Saha, Mahasweta; Al-Janabi, Balsam; Beck, Miriam; Brakel, Janina; Ito, Maysa; Nascimento Schulze, Jennifer C; Jakobsson-Thor, Stina; Weinberger, Florian; Sawall, Yvonne;13 response variable have been measured for Fucus vesiculosus and Zostera marina. Year: 2015 Where: Kiel Outdoor Benthocosm Treatments: - Co (0HW) = ambient treatment with no heatwaves - 1HW = one summer heatwave - 3HWs = three heatwaves, 2 spring/early summer heatwaves After 3HW means end of the experiment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::eeb18629eb1a9d797a1347717ed1c3d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::eeb18629eb1a9d797a1347717ed1c3d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:PANGAEA Authors: Pansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; +10 AuthorsPansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; Brakel, Janina; Briski, Elizabeta; Buchholz, Björn; Franz, Markus; Ito, Maysa; Paiva, Filipa; Saha, Mahasweta; Sawall, Yvonne; Weinberger, Florian; Wahl, Martin;The experiment consisted of three treatments: 0HW = no heat wave; 1HW = one single summer heat wave; and 3HW = three subsequent heat waves. In all three treatments, working with continuous flow-through of fjord water maintained the natural small-scale variability of most environmental parameters except temperature, which was adjusted to the logged thermal regime of the year 2009.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.888589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.888589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2018Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:[no funder available]Authors: Pansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; +10 AuthorsPansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; Brakel, Janina; Briski, Elizabeta; Buchholz, Björn; Franz, Markus; Ito, Maysa; Paiva, Filipa; Saha, Mahasweta; Sawall, Yvonne; Weinberger, Florian; Wahl, Martin;Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel “near‐natural” outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community‐level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::4b065a0854842b34f3d8f85095517dea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::4b065a0854842b34f3d8f85095517dea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:The Royal Society Maysa Ito; Tamar Guy-Haim; Yvonne Sawall; Markus Franz; Björn Buchholz; Thomas Hansen; Philipp Neitzel; Christian Pansch; Tobias Steinhoff; Martin Wahl; Florian Weinberger; Marco Scotti;Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups’ biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers’ feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers’ acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development. This article is part of the theme issue ‘Connected interactions: enriching food web research by spatial and social interactions’.
figshare arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed CentralAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:[no funder available]Christian Pansch; Marco Scotti; Francisco R. Barboza; Balsam Al‐Janabi; Janina Brakel; Elizabeta Briski; Björn Bucholz; Markus Franz; Maysa Ito; Filipa Paiva; Mahasweta Saha; Yvonne Sawall; Florian Weinberger; Martin Wahl;doi: 10.1111/gcb.14282
pmid: 29682862
AbstractClimate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel “near‐natural” outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community‐level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United Kingdom, United Kingdom, Germany, United KingdomPublisher:Wiley Authors: Francisco R. Barboza; Maysa Ito; Jennifer C. Nascimento-Schulze; Jennifer C. Nascimento-Schulze; +12 AuthorsFrancisco R. Barboza; Maysa Ito; Jennifer C. Nascimento-Schulze; Jennifer C. Nascimento-Schulze; Miriam Beck; Mahasweta Saha; Mahasweta Saha; Mahasweta Saha; Paul J. Somerfield; Janina Brakel; Janina Brakel; Balsam Al-Janabi; Yvonne Sawall; Stina Jakobsson Thor; Florian Weinberger; Christian Pansch;doi: 10.1111/gcb.14801
pmid: 31670451
AbstractMarine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near‐natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late‐spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short‐term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2019Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Saha, Mahasweta; Al-Janabi, Balsam; Beck, Miriam; Brakel, Janina; Ito, Maysa; Nascimento Schulze, Jennifer C; Jakobsson-Thor, Stina; Weinberger, Florian; Sawall, Yvonne;13 response variable have been measured for Fucus vesiculosus and Zostera marina. Year: 2015 Where: Kiel Outdoor Benthocosm Treatments: - Co (0HW) = ambient treatment with no heatwaves - 1HW = one summer heatwave - 3HWs = three heatwaves, 2 spring/early summer heatwaves After 3HW means end of the experiment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::eeb18629eb1a9d797a1347717ed1c3d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::eeb18629eb1a9d797a1347717ed1c3d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:PANGAEA Authors: Pansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; +10 AuthorsPansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; Brakel, Janina; Briski, Elizabeta; Buchholz, Björn; Franz, Markus; Ito, Maysa; Paiva, Filipa; Saha, Mahasweta; Sawall, Yvonne; Weinberger, Florian; Wahl, Martin;The experiment consisted of three treatments: 0HW = no heat wave; 1HW = one single summer heat wave; and 3HW = three subsequent heat waves. In all three treatments, working with continuous flow-through of fjord water maintained the natural small-scale variability of most environmental parameters except temperature, which was adjusted to the logged thermal regime of the year 2009.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.888589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.888589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2018Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:[no funder available]Authors: Pansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; +10 AuthorsPansch, Christian; Scotti, Marco; Barboza, Francisco Rafael; Al-Janabi, Balsam; Brakel, Janina; Briski, Elizabeta; Buchholz, Björn; Franz, Markus; Ito, Maysa; Paiva, Filipa; Saha, Mahasweta; Sawall, Yvonne; Weinberger, Florian; Wahl, Martin;Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel “near‐natural” outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community‐level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::4b065a0854842b34f3d8f85095517dea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::4b065a0854842b34f3d8f85095517dea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu