- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Italy, Spain, Switzerland, Italy, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | QUINCY, EC | IMBALANCE-PEC| QUINCY ,EC| IMBALANCE-PMingkai Jiang; Anthony P. Walker; Christian Körner; César Terrer; Kelly A. Heilman; Kristine Grace Cabugao; Benton N. Taylor; Elliott Campbell; Susan E. Trumbore; Margaret S. Torn; Jürgen Knauer; Josep Peñuelas; Julia Pongratz; Julia Pongratz; David S. Ellsworth; William K. Smith; Sean M. McMahon; Manon Sabot; Natasha MacBean; David J. P. Moore; Graham D. Farquhar; Roel J. W. Brienen; Phillip J. van Mantgem; A. Shafer Powell; Sönke Zaehle; Victor O. Leshyk; Martin G. De Kauwe; Terhi Riutta; Heather Graven; Steve L. Voelker; Fortunat Joos; Kathleen K. Treseder; Philippe Ciais; Simone Fatichi; Simone Fatichi; Benjamin N. Sulman; Lianhong Gu; Bruce A. Hungate; Martin Heimann; Juergen Schleucher; Matthew E. Craig; Pieter A. Zuidema; Stephen Sitch; Joshua B. Fisher; Colleen M. Iversen; Belinda E. Medlyn; Ralph F. Keeling; Mary E. Whelan; Ana Bastos; Yadvinder Malhi; David Frank; Katerina Georgiou; Maxime Cailleret; Maxime Cailleret; Tim R. McVicar; Tim R. McVicar; Sebastian Leuzinger; Soumaya Belmecheri; Yao Liu; Josep G. Canadell; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Trevor F. Keenan; Trevor F. Keenan; Richard J. Norby; Anna T. Trugman; Giovanna Battipaglia; Vanessa Haverd;doi: 10.1111/nph.16866 , 10.48350/153006
pmid: 32789857
SummaryAtmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 404 citations 404 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: I..., NSF | Collaborative Research: P..., NSF | Collaborative Proposal: ...NSF| Collaborative Research: Integrated Training for Continental Ecology (ITCE): Bridging Scales and Systems with Isotopes ,NSF| Collaborative Research: Processes and Patterns in The North American Monsoon Macrosystem ,NSF| Collaborative Proposal: Forest carbon-water interactions in relation to the North American Monsoon climate systemAuthors: Paul Szejner; Soumaya Belmecheri; James R. Ehleringer; Russell K. Monson;pmid: 31686228
Recent analyses on the length of drought recovery in forests have shown multi-year legacies, particularly in semi-arid, coniferous ecosystems. Such legacies are usually attributed to ecophysiological memory, although drought frequency itself, and its effect on overlapping recovery times, could also contribute. Here, we describe a multi-decadal study of drought legacies using tree-ring carbon-isotope ratios (δ13C) and ring-width index (RWI) in Pinus ponderosa at 13 montane sites traversing a winter-summer precipitation gradient in the Southwestern U.S. Sites and trees were selected to avoid collection biases that exist in archived tree-ring databanks. The spatial hydroclimate gradient and winter-summer seasonal patterns were well predicted by seasonal and inter-annual correlations between δ13C and atmospheric vapor pressure deficit (VPD). Using VPD, we found that the probability of extreme drought has increased up to 70% in this region during the past two decades. When the recent increase in drought frequency was not considered, multi-year legacies in both δ13C and RWI were observed at most sites. When the increase in drought frequency was detrended from tree-ring chronologies, some sites exhibited short legacies (1-2 years) in both δ13C and RWI, and there was a sight trend for longer legacies in RWI. However, when considered broadly across the region and multiple decades, no significant legacies were observed, which contrasts with past studies. Our results reveal that a contribution to observed multi-year legacies is related to shifts in the climate system itself, an exogenous factor, that must be considered along with physiological memory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04550-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04550-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:NSF | Collaborative Research: I...NSF| Collaborative Research: Integrated Training for Continental Ecology (ITCE): Bridging Scales and Systems with IsotopesPaul Szejner; William E. Wright; Soumaya Belmecheri; David Meko; Steven W. Leavitt; James R. Ehleringer; Russell K. Monson;doi: 10.1111/gcb.14395
pmid: 29999573
AbstractTree‐ring carbon and oxygen isotope ratios have been used to understand past dynamics in forest carbon and water cycling. Recently, this has been possible for different parts of single growing seasons by isolating anatomical sections within individual annual rings. Uncertainties in this approach are associated with correlated climate legacies that can occur at a higher frequency, such as across successive seasons, or a lower frequency, such as across years. The objective of this study was to gain insight into how legacies affect cross‐correlation in the δ13C and δ18O isotope ratios in the earlywood (EW) and latewood (LW) fractions of Pinus ponderosa trees at thirteen sites across a latitudinal gradient influenced by the North American Monsoon (NAM) climate system. We observed that δ13C from EW and LW has significant positive cross‐correlations at most sites, whereas EW and LW δ18O values were cross‐correlated at about half the sites. Using combined statistical and mechanistic models, we show that cross‐correlations in both δ13C and δ18O can be largely explained by a low‐frequency (multiple‐year) mode that may be associated with long‐term climate change. We isolated, and statistically removed, the low‐frequency correlation, which resulted in greater geographical differentiation of the EW and LW isotope signals. The remaining higher‐frequency (seasonal) cross‐correlations between EW and LW isotope ratios were explored using a mechanistic isotope fractionation–climate model. This showed that lower atmospheric vapor pressure deficits associated with monsoon rain increase the EW‐LW differentiation for both δ13C and δ18O at southern sites, compared to northern sites. Our results support the hypothesis that dominantly unimodal precipitation regimes, such as near the northern boundary of the NAM, are more likely to foster cross‐correlations in the isotope signals of EW and LW, potentially due to greater sharing of common carbohydrate and soil water resource pools, compared to southerly sites with bimodal precipitation regimes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 56 citations 56 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research an..., NSF | DISSERTATION RESEARCH: In...NSF| Collaborative Research and NEON: MSB Category 2: PalEON - a PaleoEcological Observatory Network to Assess Terrestrial Ecosystem Models ,NSF| DISSERTATION RESEARCH: Investigating the resiliency of the savanna-forest biome to environmental changeValerie Trouet; Kelly A. Heilman; Kelly A. Heilman; Jason S. McLachlan; Soumaya Belmecheri; Neil Pederson; Melissa A. Berke;AbstractBoth increases in temperature and changes in precipitation may limit future tree growth, but rising atmospheric CO2 could offset some of these stressors through increased plant Water Use Efficiency (WUE). The net balance between the negative impacts of climate change and positive effects of CO2 on tree growth is crucial for ecotones, where increased climate stress could drive mortality and shifts in range. Here, we quantify the effects of climate, stand structure, and rising CO2 on both annual tree-ring growth increment and intrinsic WUE (iWUE) at a savanna-forest boundary in the Upper Midwest United States. Taking a Bayesian hierarchical modelling approach, we find that plant iWUE increased by ~ 16–23% over the course of the twentieth century, but on average, tree-ring growth increments do not significantly increase. Consistent with higher iWUE under increased CO2 and recent wetting, we observe a decrease in sensitivity of tree growth to annual precipitation, leading to ~ 35–41% higher growth under dry conditions compared to trees of similar size in the past. However, an emerging interaction between summer maximum temperatures and annual precipitation diminishes the water-savings benefit under hot and dry conditions. This decrease in precipitation sensitivity, and the interaction between temperature and precipitation are strongest in open canopy microclimates, suggesting that stand structure may modulate response to future changes. Overall, while higher iWUE may provide some water savings benefits to growth under normal drought conditions, near-term future temperature increases combined with drought events could drive growth declines of about 50%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-021-04892-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-021-04892-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Italy, Spain, Switzerland, Italy, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | QUINCY, EC | IMBALANCE-PEC| QUINCY ,EC| IMBALANCE-PMingkai Jiang; Anthony P. Walker; Christian Körner; César Terrer; Kelly A. Heilman; Kristine Grace Cabugao; Benton N. Taylor; Elliott Campbell; Susan E. Trumbore; Margaret S. Torn; Jürgen Knauer; Josep Peñuelas; Julia Pongratz; Julia Pongratz; David S. Ellsworth; William K. Smith; Sean M. McMahon; Manon Sabot; Natasha MacBean; David J. P. Moore; Graham D. Farquhar; Roel J. W. Brienen; Phillip J. van Mantgem; A. Shafer Powell; Sönke Zaehle; Victor O. Leshyk; Martin G. De Kauwe; Terhi Riutta; Heather Graven; Steve L. Voelker; Fortunat Joos; Kathleen K. Treseder; Philippe Ciais; Simone Fatichi; Simone Fatichi; Benjamin N. Sulman; Lianhong Gu; Bruce A. Hungate; Martin Heimann; Juergen Schleucher; Matthew E. Craig; Pieter A. Zuidema; Stephen Sitch; Joshua B. Fisher; Colleen M. Iversen; Belinda E. Medlyn; Ralph F. Keeling; Mary E. Whelan; Ana Bastos; Yadvinder Malhi; David Frank; Katerina Georgiou; Maxime Cailleret; Maxime Cailleret; Tim R. McVicar; Tim R. McVicar; Sebastian Leuzinger; Soumaya Belmecheri; Yao Liu; Josep G. Canadell; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Trevor F. Keenan; Trevor F. Keenan; Richard J. Norby; Anna T. Trugman; Giovanna Battipaglia; Vanessa Haverd;doi: 10.1111/nph.16866 , 10.48350/153006
pmid: 32789857
SummaryAtmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 404 citations 404 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03243579Data sources: Bielefeld Academic Search Engine (BASE)Diposit Digital de Documents de la UABArticle . 2021Data sources: Diposit Digital de Documents de la UABInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: I..., NSF | Collaborative Research: P..., NSF | Collaborative Proposal: ...NSF| Collaborative Research: Integrated Training for Continental Ecology (ITCE): Bridging Scales and Systems with Isotopes ,NSF| Collaborative Research: Processes and Patterns in The North American Monsoon Macrosystem ,NSF| Collaborative Proposal: Forest carbon-water interactions in relation to the North American Monsoon climate systemAuthors: Paul Szejner; Soumaya Belmecheri; James R. Ehleringer; Russell K. Monson;pmid: 31686228
Recent analyses on the length of drought recovery in forests have shown multi-year legacies, particularly in semi-arid, coniferous ecosystems. Such legacies are usually attributed to ecophysiological memory, although drought frequency itself, and its effect on overlapping recovery times, could also contribute. Here, we describe a multi-decadal study of drought legacies using tree-ring carbon-isotope ratios (δ13C) and ring-width index (RWI) in Pinus ponderosa at 13 montane sites traversing a winter-summer precipitation gradient in the Southwestern U.S. Sites and trees were selected to avoid collection biases that exist in archived tree-ring databanks. The spatial hydroclimate gradient and winter-summer seasonal patterns were well predicted by seasonal and inter-annual correlations between δ13C and atmospheric vapor pressure deficit (VPD). Using VPD, we found that the probability of extreme drought has increased up to 70% in this region during the past two decades. When the recent increase in drought frequency was not considered, multi-year legacies in both δ13C and RWI were observed at most sites. When the increase in drought frequency was detrended from tree-ring chronologies, some sites exhibited short legacies (1-2 years) in both δ13C and RWI, and there was a sight trend for longer legacies in RWI. However, when considered broadly across the region and multiple decades, no significant legacies were observed, which contrasts with past studies. Our results reveal that a contribution to observed multi-year legacies is related to shifts in the climate system itself, an exogenous factor, that must be considered along with physiological memory.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04550-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-019-04550-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:NSF | Collaborative Research: I...NSF| Collaborative Research: Integrated Training for Continental Ecology (ITCE): Bridging Scales and Systems with IsotopesPaul Szejner; William E. Wright; Soumaya Belmecheri; David Meko; Steven W. Leavitt; James R. Ehleringer; Russell K. Monson;doi: 10.1111/gcb.14395
pmid: 29999573
AbstractTree‐ring carbon and oxygen isotope ratios have been used to understand past dynamics in forest carbon and water cycling. Recently, this has been possible for different parts of single growing seasons by isolating anatomical sections within individual annual rings. Uncertainties in this approach are associated with correlated climate legacies that can occur at a higher frequency, such as across successive seasons, or a lower frequency, such as across years. The objective of this study was to gain insight into how legacies affect cross‐correlation in the δ13C and δ18O isotope ratios in the earlywood (EW) and latewood (LW) fractions of Pinus ponderosa trees at thirteen sites across a latitudinal gradient influenced by the North American Monsoon (NAM) climate system. We observed that δ13C from EW and LW has significant positive cross‐correlations at most sites, whereas EW and LW δ18O values were cross‐correlated at about half the sites. Using combined statistical and mechanistic models, we show that cross‐correlations in both δ13C and δ18O can be largely explained by a low‐frequency (multiple‐year) mode that may be associated with long‐term climate change. We isolated, and statistically removed, the low‐frequency correlation, which resulted in greater geographical differentiation of the EW and LW isotope signals. The remaining higher‐frequency (seasonal) cross‐correlations between EW and LW isotope ratios were explored using a mechanistic isotope fractionation–climate model. This showed that lower atmospheric vapor pressure deficits associated with monsoon rain increase the EW‐LW differentiation for both δ13C and δ18O at southern sites, compared to northern sites. Our results support the hypothesis that dominantly unimodal precipitation regimes, such as near the northern boundary of the NAM, are more likely to foster cross‐correlations in the isotope signals of EW and LW, potentially due to greater sharing of common carbohydrate and soil water resource pools, compared to southerly sites with bimodal precipitation regimes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 56 citations 56 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14395&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research an..., NSF | DISSERTATION RESEARCH: In...NSF| Collaborative Research and NEON: MSB Category 2: PalEON - a PaleoEcological Observatory Network to Assess Terrestrial Ecosystem Models ,NSF| DISSERTATION RESEARCH: Investigating the resiliency of the savanna-forest biome to environmental changeValerie Trouet; Kelly A. Heilman; Kelly A. Heilman; Jason S. McLachlan; Soumaya Belmecheri; Neil Pederson; Melissa A. Berke;AbstractBoth increases in temperature and changes in precipitation may limit future tree growth, but rising atmospheric CO2 could offset some of these stressors through increased plant Water Use Efficiency (WUE). The net balance between the negative impacts of climate change and positive effects of CO2 on tree growth is crucial for ecotones, where increased climate stress could drive mortality and shifts in range. Here, we quantify the effects of climate, stand structure, and rising CO2 on both annual tree-ring growth increment and intrinsic WUE (iWUE) at a savanna-forest boundary in the Upper Midwest United States. Taking a Bayesian hierarchical modelling approach, we find that plant iWUE increased by ~ 16–23% over the course of the twentieth century, but on average, tree-ring growth increments do not significantly increase. Consistent with higher iWUE under increased CO2 and recent wetting, we observe a decrease in sensitivity of tree growth to annual precipitation, leading to ~ 35–41% higher growth under dry conditions compared to trees of similar size in the past. However, an emerging interaction between summer maximum temperatures and annual precipitation diminishes the water-savings benefit under hot and dry conditions. This decrease in precipitation sensitivity, and the interaction between temperature and precipitation are strongest in open canopy microclimates, suggesting that stand structure may modulate response to future changes. Overall, while higher iWUE may provide some water savings benefits to growth under normal drought conditions, near-term future temperature increases combined with drought events could drive growth declines of about 50%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-021-04892-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-021-04892-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu