- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2017Embargo end date: 01 Jan 2016 ItalyPublisher:Elsevier BV Jannelli N.; Anna Nastro R.; Cigolotti V.; Minutillo M.; Falcucci G.;arXiv: 1611.02735
handle: 2108/206312
Twelve single chambered, air-cathode Tubular Microbial Fuel Cells (TMFCs) have been filled up with fruit and vegetable residues. The anodes were realized by means of a carbon fiber brush, while the cathodes were realized through a graphite-based porous ceramic disk with Nafion membranes (117 Dupont). The performances in terms of polarization curves and power production were assessed according to different operating conditions: percentage of solid substrate water dilution, adoption of freshwater and a 35mg/L NaCl water solution and, finally, the effect of an initial potentiostatic growth. All TMFCs operated at low pH (pH$=3.0 \pm 0.5$), as no pH amendment was carried out. Despite the harsh environmental conditions, our TMFCs showed a Power Density (PD) ranging from 20 to 55~mW/m$^2 \cdot$kg$_{\text{waste}}$ and a maximum CD of 20~mA/m$^2 \cdot$kg$_{\text{waste}}$, referred to the cathodic surface. COD removal after a $28-$day period was about $45 \%$. The remarkably low pH values as well as the fouling of Nafion membrane very likely limited TMFC performances. However, a scale-up estimation of our reactors provides interesting values in terms of power production, compared to actual anaerobic digestion plants. These results encourage further studies to characterize the graphite-based porous ceramic cathodes and to optimize the global TMFC performances, as they may provide a valid and sustainable alternative to anaerobic digestion technologies. 13 pages, 10 Figures
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | ReTraCEEC| ReTraCERosa Anna Nastro; Enrica Leccisi; Maria Toscanesi; Gengyuan Liu; Marco Trifuoggi; Sergio Ulgiati;doi: 10.3390/en14154453
Seawater represents a potential resource to ensure sustainable availability of water for population and irrigation purposes, especially in some areas of the world. Desalination processes allow the production of fresh water, but they generate also brine as waste product. Sustainable brine management should be identified to ensure proper disposal and potentially resource recovery. This experimental study showed that emerging technologies such as Microbial Desalination Cells (MDCs) may provide a valuable contribution to the sustainability of the seawater desalination sector. In this paper, we report results on lab-scale desalination brine treatments applying MDCs, which allow energy savings, resource recovery, environmental impact minimization, and reduction of the organic load in municipal wastewater. Our results showed that MDCs’ treatment allows the removal of approximately 33 g of salts (62% of the total)—including chlorides, bromides, and sulphates—from 20 mL of brine within 96 h. The MDCs, according to the source of energy and the presence of mature biofilm at the anode, spent 7.2 J, 7.9 J, and 9.6 J in the desalination process, with the higher amount of energy required by the abiotic system and the lesser by the MDCs fed with just wastewater. Our approach also showed environmental and energy reductions because of potential metal recovery instead of returning them into marine environment. We quantified the avoided life cycle of human and marine eco-toxicity impacts as well as the reduction of cumulative energy demand of recovered metals. The main benefit in terms of avoided toxicity would arise from the mercury and copper recovery, while potential economic advantages would derive from the recovered cobalt that represents a strategic resource for many products such as battery storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV R. A. Nastro; N. Jannelli; M. Minutillo; M. Guida; M. Trifuoggi; A. L. Facci; V. K. Krastev; G. Falcucci; L. Andreassi;handle: 2108/198549
Abstract In this paper, the results of three generations of reactors for the direct conversion of the Organic Fraction of Municipal Solid Waste (OFMSW) in electrical energy are presented. The different generations corresponds to the prototype realized in the Energy Lab of the University of Naples “Parthenope” and have been monitored along a period of over three years in terms of polarization and power curves, in order to assess the feasibility of Microbial Fuel Cell as a promising source for future, sustainable energy generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Edvige Gambino; Kuppam Chandrasekhar; Rosa Anna Nastro;AbstractMarine pollution is becoming more and more serious, especially in coastal areas. Because of the sequestration and consequent accumulation of pollutants in sediments (mainly organic compounds and heavy metals), marine environment restoration cannot exempt from effective remediation of sediments themselves. It has been well proven that, after entering into the seawater, these pollutants are biotransformed into their metabolites, which may be more toxic than their parent molecules. Based on their bioavailability and toxic nature, these compounds may accumulate into the living cells of marine organisms. Pollutants bioaccumulation and biomagnification along the marine food chain lead to seafood contamination and human health hazards. Nowadays, different technologies are available for sediment remediation, such as physicochemical, biological, and bioelectrochemical processes. This paper gives an overview of the most recent techniques for marine sediment remediation while presenting sediment-based microbial fuel cells (SMFCs). We discuss the issues, the progress, and future perspectives of SMFC application to the removal of hydrocarbons and metals in the marine environment with concurrent energy production. We give an insight into the possible mechanisms leading to sediment remediation, SMFC energy balance, and future exploitation.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-13593-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-13593-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Mariagiovanna Minutillo; Pasquale Di Trolio; Rosa Anna Nastro; Fabio Flagiello; Alessandra Perna; Elio Jannelli;Abstract Microbial fuel cells (MFCs) technology represents a new approach to the sustainable electric power production, thanks to the advantages of its green features. The performance and the cost efficiency of a MFC are affected by several factors, such as the reactor architecture, the microbial microflora and the “costs per power” ratio of the electrodes. For example, cathodes powered by platinum as catalyzer are really efficient, but also expensive. In this study, two materials for cathode were examined: i) an economical biochar-based material (BC), ii) an activated carbon (AC) cathode with a nickel mesh current collector and a polytetrafluoroethylene (PTFE) binder to limit oxygen diffusion to the anodic compartment. The performances were evaluated in terms of power density and current density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2017Embargo end date: 01 Jan 2016 ItalyPublisher:Elsevier BV Jannelli N.; Anna Nastro R.; Cigolotti V.; Minutillo M.; Falcucci G.;arXiv: 1611.02735
handle: 2108/206312
Twelve single chambered, air-cathode Tubular Microbial Fuel Cells (TMFCs) have been filled up with fruit and vegetable residues. The anodes were realized by means of a carbon fiber brush, while the cathodes were realized through a graphite-based porous ceramic disk with Nafion membranes (117 Dupont). The performances in terms of polarization curves and power production were assessed according to different operating conditions: percentage of solid substrate water dilution, adoption of freshwater and a 35mg/L NaCl water solution and, finally, the effect of an initial potentiostatic growth. All TMFCs operated at low pH (pH$=3.0 \pm 0.5$), as no pH amendment was carried out. Despite the harsh environmental conditions, our TMFCs showed a Power Density (PD) ranging from 20 to 55~mW/m$^2 \cdot$kg$_{\text{waste}}$ and a maximum CD of 20~mA/m$^2 \cdot$kg$_{\text{waste}}$, referred to the cathodic surface. COD removal after a $28-$day period was about $45 \%$. The remarkably low pH values as well as the fouling of Nafion membrane very likely limited TMFC performances. However, a scale-up estimation of our reactors provides interesting values in terms of power production, compared to actual anaerobic digestion plants. These results encourage further studies to characterize the graphite-based porous ceramic cathodes and to optimize the global TMFC performances, as they may provide a valid and sustainable alternative to anaerobic digestion technologies. 13 pages, 10 Figures
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: DataciteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.07.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | ReTraCEEC| ReTraCERosa Anna Nastro; Enrica Leccisi; Maria Toscanesi; Gengyuan Liu; Marco Trifuoggi; Sergio Ulgiati;doi: 10.3390/en14154453
Seawater represents a potential resource to ensure sustainable availability of water for population and irrigation purposes, especially in some areas of the world. Desalination processes allow the production of fresh water, but they generate also brine as waste product. Sustainable brine management should be identified to ensure proper disposal and potentially resource recovery. This experimental study showed that emerging technologies such as Microbial Desalination Cells (MDCs) may provide a valuable contribution to the sustainability of the seawater desalination sector. In this paper, we report results on lab-scale desalination brine treatments applying MDCs, which allow energy savings, resource recovery, environmental impact minimization, and reduction of the organic load in municipal wastewater. Our results showed that MDCs’ treatment allows the removal of approximately 33 g of salts (62% of the total)—including chlorides, bromides, and sulphates—from 20 mL of brine within 96 h. The MDCs, according to the source of energy and the presence of mature biofilm at the anode, spent 7.2 J, 7.9 J, and 9.6 J in the desalination process, with the higher amount of energy required by the abiotic system and the lesser by the MDCs fed with just wastewater. Our approach also showed environmental and energy reductions because of potential metal recovery instead of returning them into marine environment. We quantified the avoided life cycle of human and marine eco-toxicity impacts as well as the reduction of cumulative energy demand of recovered metals. The main benefit in terms of avoided toxicity would arise from the mercury and copper recovery, while potential economic advantages would derive from the recovered cobalt that represents a strategic resource for many products such as battery storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV R. A. Nastro; N. Jannelli; M. Minutillo; M. Guida; M. Trifuoggi; A. L. Facci; V. K. Krastev; G. Falcucci; L. Andreassi;handle: 2108/198549
Abstract In this paper, the results of three generations of reactors for the direct conversion of the Organic Fraction of Municipal Solid Waste (OFMSW) in electrical energy are presented. The different generations corresponds to the prototype realized in the Energy Lab of the University of Naples “Parthenope” and have been monitored along a period of over three years in terms of polarization and power curves, in order to assess the feasibility of Microbial Fuel Cell as a promising source for future, sustainable energy generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Edvige Gambino; Kuppam Chandrasekhar; Rosa Anna Nastro;AbstractMarine pollution is becoming more and more serious, especially in coastal areas. Because of the sequestration and consequent accumulation of pollutants in sediments (mainly organic compounds and heavy metals), marine environment restoration cannot exempt from effective remediation of sediments themselves. It has been well proven that, after entering into the seawater, these pollutants are biotransformed into their metabolites, which may be more toxic than their parent molecules. Based on their bioavailability and toxic nature, these compounds may accumulate into the living cells of marine organisms. Pollutants bioaccumulation and biomagnification along the marine food chain lead to seafood contamination and human health hazards. Nowadays, different technologies are available for sediment remediation, such as physicochemical, biological, and bioelectrochemical processes. This paper gives an overview of the most recent techniques for marine sediment remediation while presenting sediment-based microbial fuel cells (SMFCs). We discuss the issues, the progress, and future perspectives of SMFC application to the removal of hydrocarbons and metals in the marine environment with concurrent energy production. We give an insight into the possible mechanisms leading to sediment remediation, SMFC energy balance, and future exploitation.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-13593-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-021-13593-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Mariagiovanna Minutillo; Pasquale Di Trolio; Rosa Anna Nastro; Fabio Flagiello; Alessandra Perna; Elio Jannelli;Abstract Microbial fuel cells (MFCs) technology represents a new approach to the sustainable electric power production, thanks to the advantages of its green features. The performance and the cost efficiency of a MFC are affected by several factors, such as the reactor architecture, the microbial microflora and the “costs per power” ratio of the electrodes. For example, cathodes powered by platinum as catalyzer are really efficient, but also expensive. In this study, two materials for cathode were examined: i) an economical biochar-based material (BC), ii) an activated carbon (AC) cathode with a nickel mesh current collector and a polytetrafluoroethylene (PTFE) binder to limit oxygen diffusion to the anodic compartment. The performances were evaluated in terms of power density and current density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu