- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Italy, AustriaPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEAuthors: van Vuuren, Detlef P.; Edelenbosch, Oreane Y.; McCollum, David L.; Riahi, Keywan;handle: 11311/1062769
Transportation Resea... arrow_drop_down Transportation Research Part D Transport and EnvironmentOther literature type . 2017Data sources: Pure Utrecht UniversityTransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Part D Transport and EnvironmentOther literature type . 2017Data sources: Pure Utrecht UniversityTransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSMatthew Gidden; Volker Krey; Volker Krey; David L. McCollum; David L. McCollum; Daniel Huppmann; Oliver Fricko; Wenji Zhou; Keywan Riahi; Keywan Riahi; Keywan Riahi;Abstract The radical change in recent global climate governance calls for China and Europe to ramp up their efforts in leading the world to reach the long-term climate goals. By analyzing the results from the state-of-the-art global integrated assessment model, MESSAGEix-GLOBIOM, this paper aims to understand the future levels of financial investment needed for building and maintaining energy-related infrastructure in the two regions for fulfilling stringent targets consistent with ‘well below 2 °C’. The results indicate that a rapid upscaling and structural change of these investments towards decarbonization are necessitated by the climate stringent scenarios. China and Europe need to increase their low carbon investments by 65% and 38% in a scenario reaching the 2° target relative to their respective reference scenarios which assume no such target from 2016–2050. In a more stringent climate policy scenario of the 1.5° target, these investment needs will increase by 149% and 79% for China and Europe respectively. Among all the energy sectors, energy efficiency, renewable electricity generation and electricity transmission and distribution are the three largest investing targets for the two regions. However, those investments will not likely be realized without strong policy incentives. Implications for green finance and multilateral cooperation initiatives are discussed in the context of the scenario results.
IIASA PURE arrow_drop_down Environmental Research LettersArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab0dd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Environmental Research LettersArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab0dd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, United Kingdom, France, FrancePublisher:Elsevier BV Funded by:EC | ANIMALCHANGEEC| ANIMALCHANGEZbigniew Klimont; Tatiana Ermolieva; Hugo Valin; Nils Johnson; Joeri Rogelj; Peter Kolp; Petr Havlik; Shonali Pachauri; Keywan Riahi; Keywan Riahi; Oliver Fricko; Markus Amann; David L. McCollum; Chris Heyes; Shilpa Rao; Mario Herrero; Erwin Schmid; Wolfgang Schoepp; Mykola Gusti; Mykola Gusti; Georg Kindermann; Nicklas Forsell; Michael Obersteiner; Volker Krey; M. Strubegger;handle: 10568/80056 , 10044/1/78070
AbstractStudies of global environmental change make extensive use of scenarios to explore how the future can evolve under a consistent set of assumptions. The recently developed Shared Socioeconomic Pathways (SSPs) create a framework for the study of climate-related scenario outcomes. Their five narratives span a wide range of worlds that vary in their challenges for climate change mitigation and adaptation. Here we provide background on the quantification that has been selected to serve as the reference, or ‘marker’, implementation for SSP2. The SSP2 narrative describes a middle-of-the-road development in the mitigation and adaptation challenges space. We explain how the narrative has been translated into quantitative assumptions in the IIASA Integrated Assessment Modelling Framework. We show that our SSP2 marker implementation occupies a central position for key metrics along the mitigation and adaptation challenge dimensions. For many dimensions the SSP2 marker implementation also reflects an extension of the historical experience, particularly in terms of carbon and energy intensity improvements in its baseline. This leads to a steady emissions increase over the 21st century, with projected end-of-century warming nearing 4°C relative to preindustrial levels. On the other hand, SSP2 also shows that global-mean temperature increase can be limited to below 2°C, pending stringent climate policies throughout the world. The added value of the SSP2 marker implementation for the wider scientific community is that it can serve as a starting point to further explore integrated solutions for achieving multiple societal objectives in light of the climate adaptation and mitigation challenges that society could face over the 21st century.
IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/80056Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/78070Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Environmental ChangeArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 731 citations 731 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/80056Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/78070Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Environmental ChangeArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Embargo end date: 01 Jan 2015 Germany, Germany, Austria, SwitzerlandPublisher:IOP Publishing Reto Knutti; Joeri Rogelj; Joeri Rogelj; Malte Meinshausen; Malte Meinshausen; Andy Reisinger; Keywan Riahi; Keywan Riahi; David L. McCollum;Global-mean temperature increase is roughly proportional to cumulative emissions of carbon-dioxide (CO2). Limiting global warming to any level thus implies a finite CO2 budget. Due to geophysical uncertainties, the size of such budgets can only be expressed in probabilistic terms and is further influenced by non-CO2 emissions. We here explore how societal choices related to energy demand and specific mitigation options influence the size of carbon budgets for meeting a given temperature objective. We find that choices that exclude specific CO2 mitigation technologies (like Carbon Capture and Storage) result in greater costs, smaller compatible CO2 budgets until 2050, but larger CO2 budgets until 2100. Vice versa, choices that lead to a larger CO2 mitigation potential result in CO2 budgets until 2100 that are smaller but can be met at lower costs. In most cases, these budget variations can be explained by the amount of non-CO2 mitigation that is carried out in conjunction with CO2, and associated global carbon prices that also drive mitigation of non-CO2 gases. Budget variations are of the order of 10% around their central value. In all cases, limiting warming to below 2 °C thus still implies that CO2 emissions need to be reduced rapidly in the coming decades. Environmental Research Letters, 10 (7) ISSN:1748-9326 ISSN:1748-9318
Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Netherlands, Germany, Italy, France, Netherlands, Australia, France, France, Austria, AustraliaPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEDetlef P. van Vuuren; Detlef P. van Vuuren; Fuminori Sano; Alban Kitous; Christoph Bertram; Hannah Daly; Hannah Daly; David L. McCollum; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Page Kyle; Samuel Carrara; Eoin Ó Broin; Shinichiro Fujimori; Panagiotis Karkatsoulis;handle: 11311/1062766
The transport sector is growing fast in terms of energy use and accompanying greenhouse gas emissions. Integrated assessment models (IAMs) are used widely to analyze energy system transitions over a decadal time frame to help inform and evaluating international climate policy. As part of this, IAMs also explore pathways of decarbonizing the transport sector. This study quantifies the contribution of changes in activity growth, modal structure, energy intensity and fuel mix to the projected passenger transport carbon emission pathways. The Laspeyres index decomposition method is used to compare results across models and scenarios, and against historical transport trends. Broadly-speaking the models show similar trends, projecting continuous transport activity growth, reduced energy intensity and in some cases modal shift to carbon-intensive modes - similar to those observed historically in a business-as-usual scenario. In policy-induced mitigation scenarios further enhancements of energy efficiency and fuel switching is seen, showing a clear break with historical trends. Reduced activity growth and modal shift (towards less carbon-intensive modes) only have a limited contribution to emission reduction. Measures that could induce such changes could possibly complement the aggressive, technology switch required in the current scenarios to reach internationally agreed climate targets.
Publication Database... arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 2017Data sources: Pure Utrecht UniversityINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PUREIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PURETransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 2017Data sources: Pure Utrecht UniversityINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PUREIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PURETransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: McCollum, D.L.; Krey, V.; Riahi, K.;AbstractReaching the economic, environmental and sustainability objectives of all societies requires overcoming several major energy challenges; it necessitates rapid progress in multiple areas. The scenario pathways presented in this paper describe transformative changes toward these goals, taking a broad view of the four main energy challenges faced by society in the 21st century: providing universal access to modern energy for all; reducing the impacts of energy production on human health and the environment; avoiding dangerous climate change; and enhancing energy security. The overarching objective of the paper is to provide policy guidance on how to facilitate the transformation of the energy system to achieve these multiple energy objectives. Particular focus is given to the required pace of the transformation at both the global and regional levels, and to the types of financial and policy measures that will be needed to ensure a successful transition. Synergies and trade‐offs between the objectives are identified, and co‐benefits quantified. The paper makes an important contribution to the scenario literature by approaching the global transition toward sustainable development in a more integrated, holistic manner than is common in other studies.
Natural Resources Fo... arrow_drop_down Natural Resources ForumArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1477-8947.2012.01459.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Natural Resources Fo... arrow_drop_down Natural Resources ForumArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1477-8947.2012.01459.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Germany, Italy, United Kingdom, Austria, GermanyPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEKeywan Riahi; Keywan Riahi; Volker Krey; Hazel Pettifor; Charlie Wilson; David L. McCollum; David L. McCollum; Oreane Y. Edelenbosch; Christoph Bertram; Zhenhong Lin; Kalai Ramea; Sei Fujisawa;handle: 11311/1062767
A large body of transport sector-focused research recognizes the complexity of human behavior in relation to mobility. Yet, global integrated assessment models (IAMs), which are widely used to evaluate the costs, potentials, and consequences of different greenhouse gas emission trajectories over the medium-to-long term, typically represent behavior and the end use of energy as a simple rational choice between available alternatives, even though abundant empirical evidence shows that real-world decision making is more complex and less routinely rational. This paper demonstrates the value of incorporating certain features of consumer behavior in IAMs, focusing on light-duty vehicle (LDV) purchase decisions. An innovative model formulation is developed to represent heterogeneous consumer groups with varying preferences for vehicle novelty, range, refueling/recharging availability, and variety. The formulation is then implemented in the transport module of MESSAGE-Transport, a global IAM, although it also has the generic flexibility to be applied in energy-economy models with varying set-ups. Comparison of conventional and ‘behaviorally-realistic’ model runs with respect to vehicle purchase decisions shows that consumer preferences may slow down the transition to alternative fuel (low-carbon) vehicles. Consequently, stronger price-based incentives and/or non-price based measures may be needed to transform the global fleet of passenger vehicles, at least in the initial market phases of novel alternatives. Otherwise, the mitigation burden borne by other transport sub-sectors and other energy sectors could be higher than previously estimated. More generally, capturing behavioral features of energy consumers in global IAMs increases their usefulness to policy makers by allowing a more realistic assessment of a more diverse suite of policies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, United Kingdom, Austria, ItalyPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEAuthors: Pettifor, H.; Wilson, C.; McCollum, D.; EDELENBOSCH, OREANE YASMIN;handle: 11311/1062760
We present a unique and transparent approach for incorporating social influence effects into global integrated assessment models used to analyse climate change mitigation. We draw conceptually on Rogers (2003) diffusion of innovations, introducing heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real world processes.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: McCollum, D.L.; Yang, C.; Yeh, S.; Ogden, J.;Abstract California has taken a leading role in regulating greenhouse gas (GHG) emissions, requiring that its economy-wide emissions be brought back down to the 1990 level by 2020. The state also has a long-term, aspirational goal of an 80 percent reduction below the 1990 level by 2050. While the steps needed to achieve the near-term target have already been clearly defined by California policy makers, the suite of transformational technologies and policies required to decarbonize the energy system over the long term have not yet been explored. This paper describes an effort to fill this important gap, introducing CA-TIMES, a bottom-up, technologically-rich, integrated energy–engineering–environmental–economic systems model that has been developed to guide the long-term policy planning process. CA-TIMES is useful for exploring low-carbon scenarios, and the analyses described here focus on the potential evolution of the transportation, fuel supply, and electric generation sectors over the next several decades in response to various energy and climate policies. We find that meeting California’s 80% emission reduction goal can be achieved through a combination of mitigation strategies, including managing the growth in energy service demand, increasing investments in efficiency and low-carbon energy supply technologies, and promoting demand technologies that facilitate end-use device electrification and a decrease in the direct use of hydrocarbon fuels through efficiency improvement and fuel switching. In such deep emission reduction scenarios, we estimate that energy system costs (accounting for investments on the energy supply side and in transportation demand technologies, as well as fuel and O&M costs) could be around 8–17% higher than in a reference case. Meanwhile, average abatement costs could range from $107 to $225/tCO 2 . These estimates are very much dependent on a range of socio-political and technological uncertainties, for instance, the availability and cost of biomass, nuclear power, carbon capture and storage, and electric and hydrogen vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2011.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2011.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 Italy, United Kingdom, Austria, ItalyPublisher:MDPI AG Ajay Gambhir; Laurent Drouet; David McCollum; Tamaryn Napp; Dan Bernie; Adam Hawkes; Oliver Fricko; Petr Havlik; Keywan Riahi; Valentina Bosetti; Jason Lowe;doi: 10.3390/en10010089
handle: 11565/3997180 , 10044/1/43269
This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH) harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2), to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2 °C goal is, when compared to the 2.5–4 °C goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2 °C goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2 °C is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required.
CORE arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Italy, AustriaPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEAuthors: van Vuuren, Detlef P.; Edelenbosch, Oreane Y.; McCollum, David L.; Riahi, Keywan;handle: 11311/1062769
Transportation Resea... arrow_drop_down Transportation Research Part D Transport and EnvironmentOther literature type . 2017Data sources: Pure Utrecht UniversityTransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Part D Transport and EnvironmentOther literature type . 2017Data sources: Pure Utrecht UniversityTransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustriaPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSMatthew Gidden; Volker Krey; Volker Krey; David L. McCollum; David L. McCollum; Daniel Huppmann; Oliver Fricko; Wenji Zhou; Keywan Riahi; Keywan Riahi; Keywan Riahi;Abstract The radical change in recent global climate governance calls for China and Europe to ramp up their efforts in leading the world to reach the long-term climate goals. By analyzing the results from the state-of-the-art global integrated assessment model, MESSAGEix-GLOBIOM, this paper aims to understand the future levels of financial investment needed for building and maintaining energy-related infrastructure in the two regions for fulfilling stringent targets consistent with ‘well below 2 °C’. The results indicate that a rapid upscaling and structural change of these investments towards decarbonization are necessitated by the climate stringent scenarios. China and Europe need to increase their low carbon investments by 65% and 38% in a scenario reaching the 2° target relative to their respective reference scenarios which assume no such target from 2016–2050. In a more stringent climate policy scenario of the 1.5° target, these investment needs will increase by 149% and 79% for China and Europe respectively. Among all the energy sectors, energy efficiency, renewable electricity generation and electricity transmission and distribution are the three largest investing targets for the two regions. However, those investments will not likely be realized without strong policy incentives. Implications for green finance and multilateral cooperation initiatives are discussed in the context of the scenario results.
IIASA PURE arrow_drop_down Environmental Research LettersArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab0dd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Environmental Research LettersArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab0dd8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Austria, United Kingdom, France, FrancePublisher:Elsevier BV Funded by:EC | ANIMALCHANGEEC| ANIMALCHANGEZbigniew Klimont; Tatiana Ermolieva; Hugo Valin; Nils Johnson; Joeri Rogelj; Peter Kolp; Petr Havlik; Shonali Pachauri; Keywan Riahi; Keywan Riahi; Oliver Fricko; Markus Amann; David L. McCollum; Chris Heyes; Shilpa Rao; Mario Herrero; Erwin Schmid; Wolfgang Schoepp; Mykola Gusti; Mykola Gusti; Georg Kindermann; Nicklas Forsell; Michael Obersteiner; Volker Krey; M. Strubegger;handle: 10568/80056 , 10044/1/78070
AbstractStudies of global environmental change make extensive use of scenarios to explore how the future can evolve under a consistent set of assumptions. The recently developed Shared Socioeconomic Pathways (SSPs) create a framework for the study of climate-related scenario outcomes. Their five narratives span a wide range of worlds that vary in their challenges for climate change mitigation and adaptation. Here we provide background on the quantification that has been selected to serve as the reference, or ‘marker’, implementation for SSP2. The SSP2 narrative describes a middle-of-the-road development in the mitigation and adaptation challenges space. We explain how the narrative has been translated into quantitative assumptions in the IIASA Integrated Assessment Modelling Framework. We show that our SSP2 marker implementation occupies a central position for key metrics along the mitigation and adaptation challenge dimensions. For many dimensions the SSP2 marker implementation also reflects an extension of the historical experience, particularly in terms of carbon and energy intensity improvements in its baseline. This leads to a steady emissions increase over the 21st century, with projected end-of-century warming nearing 4°C relative to preindustrial levels. On the other hand, SSP2 also shows that global-mean temperature increase can be limited to below 2°C, pending stringent climate policies throughout the world. The added value of the SSP2 marker implementation for the wider scientific community is that it can serve as a starting point to further explore integrated solutions for achieving multiple societal objectives in light of the climate adaptation and mitigation challenges that society could face over the 21st century.
IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/80056Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/78070Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Environmental ChangeArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 731 citations 731 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/80056Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/78070Data sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGlobal Environmental ChangeArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Embargo end date: 01 Jan 2015 Germany, Germany, Austria, SwitzerlandPublisher:IOP Publishing Reto Knutti; Joeri Rogelj; Joeri Rogelj; Malte Meinshausen; Malte Meinshausen; Andy Reisinger; Keywan Riahi; Keywan Riahi; David L. McCollum;Global-mean temperature increase is roughly proportional to cumulative emissions of carbon-dioxide (CO2). Limiting global warming to any level thus implies a finite CO2 budget. Due to geophysical uncertainties, the size of such budgets can only be expressed in probabilistic terms and is further influenced by non-CO2 emissions. We here explore how societal choices related to energy demand and specific mitigation options influence the size of carbon budgets for meeting a given temperature objective. We find that choices that exclude specific CO2 mitigation technologies (like Carbon Capture and Storage) result in greater costs, smaller compatible CO2 budgets until 2050, but larger CO2 budgets until 2100. Vice versa, choices that lead to a larger CO2 mitigation potential result in CO2 budgets until 2100 that are smaller but can be met at lower costs. In most cases, these budget variations can be explained by the amount of non-CO2 mitigation that is carried out in conjunction with CO2, and associated global carbon prices that also drive mitigation of non-CO2 gases. Budget variations are of the order of 10% around their central value. In all cases, limiting warming to below 2 °C thus still implies that CO2 emissions need to be reduced rapidly in the coming decades. Environmental Research Letters, 10 (7) ISSN:1748-9326 ISSN:1748-9318
Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down IIASA PUREArticle . 2015 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/11423/1/Mitigation%20choices%20impact%20carbon%20budget%20size.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/7/075003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Netherlands, Germany, Italy, France, Netherlands, Australia, France, France, Austria, AustraliaPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEDetlef P. van Vuuren; Detlef P. van Vuuren; Fuminori Sano; Alban Kitous; Christoph Bertram; Hannah Daly; Hannah Daly; David L. McCollum; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Page Kyle; Samuel Carrara; Eoin Ó Broin; Shinichiro Fujimori; Panagiotis Karkatsoulis;handle: 11311/1062766
The transport sector is growing fast in terms of energy use and accompanying greenhouse gas emissions. Integrated assessment models (IAMs) are used widely to analyze energy system transitions over a decadal time frame to help inform and evaluating international climate policy. As part of this, IAMs also explore pathways of decarbonizing the transport sector. This study quantifies the contribution of changes in activity growth, modal structure, energy intensity and fuel mix to the projected passenger transport carbon emission pathways. The Laspeyres index decomposition method is used to compare results across models and scenarios, and against historical transport trends. Broadly-speaking the models show similar trends, projecting continuous transport activity growth, reduced energy intensity and in some cases modal shift to carbon-intensive modes - similar to those observed historically in a business-as-usual scenario. In policy-induced mitigation scenarios further enhancements of energy efficiency and fuel switching is seen, showing a clear break with historical trends. Reduced activity growth and modal shift (towards less carbon-intensive modes) only have a limited contribution to emission reduction. Measures that could induce such changes could possibly complement the aggressive, technology switch required in the current scenarios to reach internationally agreed climate targets.
Publication Database... arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 2017Data sources: Pure Utrecht UniversityINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PUREIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PURETransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publication Database... arrow_drop_down Transportation Research Part D Transport and EnvironmentArticle . 2017Data sources: Pure Utrecht UniversityINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PUREIIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/13621/1/Decomposing%20passenger%20transport%20futures.pdfData sources: IIASA PURETransportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: McCollum, D.L.; Krey, V.; Riahi, K.;AbstractReaching the economic, environmental and sustainability objectives of all societies requires overcoming several major energy challenges; it necessitates rapid progress in multiple areas. The scenario pathways presented in this paper describe transformative changes toward these goals, taking a broad view of the four main energy challenges faced by society in the 21st century: providing universal access to modern energy for all; reducing the impacts of energy production on human health and the environment; avoiding dangerous climate change; and enhancing energy security. The overarching objective of the paper is to provide policy guidance on how to facilitate the transformation of the energy system to achieve these multiple energy objectives. Particular focus is given to the required pace of the transformation at both the global and regional levels, and to the types of financial and policy measures that will be needed to ensure a successful transition. Synergies and trade‐offs between the objectives are identified, and co‐benefits quantified. The paper makes an important contribution to the scenario literature by approaching the global transition toward sustainable development in a more integrated, holistic manner than is common in other studies.
Natural Resources Fo... arrow_drop_down Natural Resources ForumArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1477-8947.2012.01459.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Natural Resources Fo... arrow_drop_down Natural Resources ForumArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1477-8947.2012.01459.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Germany, Italy, United Kingdom, Austria, GermanyPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEKeywan Riahi; Keywan Riahi; Volker Krey; Hazel Pettifor; Charlie Wilson; David L. McCollum; David L. McCollum; Oreane Y. Edelenbosch; Christoph Bertram; Zhenhong Lin; Kalai Ramea; Sei Fujisawa;handle: 11311/1062767
A large body of transport sector-focused research recognizes the complexity of human behavior in relation to mobility. Yet, global integrated assessment models (IAMs), which are widely used to evaluate the costs, potentials, and consequences of different greenhouse gas emission trajectories over the medium-to-long term, typically represent behavior and the end use of energy as a simple rational choice between available alternatives, even though abundant empirical evidence shows that real-world decision making is more complex and less routinely rational. This paper demonstrates the value of incorporating certain features of consumer behavior in IAMs, focusing on light-duty vehicle (LDV) purchase decisions. An innovative model formulation is developed to represent heterogeneous consumer groups with varying preferences for vehicle novelty, range, refueling/recharging availability, and variety. The formulation is then implemented in the transport module of MESSAGE-Transport, a global IAM, although it also has the generic flexibility to be applied in energy-economy models with varying set-ups. Comparison of conventional and ‘behaviorally-realistic’ model runs with respect to vehicle purchase decisions shows that consumer preferences may slow down the transition to alternative fuel (low-carbon) vehicles. Consequently, stronger price-based incentives and/or non-price based measures may be needed to transform the global fleet of passenger vehicles, at least in the initial market phases of novel alternatives. Otherwise, the mitigation burden borne by other transport sub-sectors and other energy sectors could be higher than previously estimated. More generally, capturing behavioral features of energy consumers in global IAMs increases their usefulness to policy makers by allowing a more realistic assessment of a more diverse suite of policies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphhttp://dx.doi.org/doi.org/10.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, United Kingdom, Austria, ItalyPublisher:Elsevier BV Funded by:EC | ADVANCEEC| ADVANCEAuthors: Pettifor, H.; Wilson, C.; McCollum, D.; EDELENBOSCH, OREANE YASMIN;handle: 11311/1062760
We present a unique and transparent approach for incorporating social influence effects into global integrated assessment models used to analyse climate change mitigation. We draw conceptually on Rogers (2003) diffusion of innovations, introducing heterogeneous and interconnected consumers who vary in their aversion to new technologies. Focussing on vehicle choice, we conduct novel empirical research to parameterise consumer risk aversion and how this is shaped by social and cultural influences. We find robust evidence for social influence effects, and variation between countries as a function of cultural differences. We then formulate an approach to modelling social influence which is implementable in both simulation and optimisation-type models. We use two global integrated assessment models (IMAGE and MESSAGE) to analyse four scenarios that introduce social influence and cultural differences between regions. These scenarios allow us to explore the interactions between consumer preferences and social influence. We find that incorporating social influence effects into global models accelerates the early deployment of electric vehicles and stimulates more widespread deployment across adopter groups. Incorporating cultural variation leads to significant differences in deployment between culturally divergent regions such as the USA and China. Our analysis significantly extends the ability of global integrated assessment models to provide policy-relevant analysis grounded in real world processes.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: McCollum, D.L.; Yang, C.; Yeh, S.; Ogden, J.;Abstract California has taken a leading role in regulating greenhouse gas (GHG) emissions, requiring that its economy-wide emissions be brought back down to the 1990 level by 2020. The state also has a long-term, aspirational goal of an 80 percent reduction below the 1990 level by 2050. While the steps needed to achieve the near-term target have already been clearly defined by California policy makers, the suite of transformational technologies and policies required to decarbonize the energy system over the long term have not yet been explored. This paper describes an effort to fill this important gap, introducing CA-TIMES, a bottom-up, technologically-rich, integrated energy–engineering–environmental–economic systems model that has been developed to guide the long-term policy planning process. CA-TIMES is useful for exploring low-carbon scenarios, and the analyses described here focus on the potential evolution of the transportation, fuel supply, and electric generation sectors over the next several decades in response to various energy and climate policies. We find that meeting California’s 80% emission reduction goal can be achieved through a combination of mitigation strategies, including managing the growth in energy service demand, increasing investments in efficiency and low-carbon energy supply technologies, and promoting demand technologies that facilitate end-use device electrification and a decrease in the direct use of hydrocarbon fuels through efficiency improvement and fuel switching. In such deep emission reduction scenarios, we estimate that energy system costs (accounting for investments on the energy supply side and in transportation demand technologies, as well as fuel and O&M costs) could be around 8–17% higher than in a reference case. Meanwhile, average abatement costs could range from $107 to $225/tCO 2 . These estimates are very much dependent on a range of socio-political and technological uncertainties, for instance, the availability and cost of biomass, nuclear power, carbon capture and storage, and electric and hydrogen vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2011.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2011.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 Italy, United Kingdom, Austria, ItalyPublisher:MDPI AG Ajay Gambhir; Laurent Drouet; David McCollum; Tamaryn Napp; Dan Bernie; Adam Hawkes; Oliver Fricko; Petr Havlik; Keywan Riahi; Valentina Bosetti; Jason Lowe;doi: 10.3390/en10010089
handle: 11565/3997180 , 10044/1/43269
This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH) harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2), to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2 °C goal is, when compared to the 2.5–4 °C goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2 °C goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2 °C is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required.
CORE arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu