- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Belloum, Rahma; Chennouf, Nawal; Agoudjil, Boudjemaa; Boudenne, Abderrahim; Benzarti, Karim;This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Belloum, Rahma; Chennouf, Nawal; Agoudjil, Boudjemaa; Boudenne, Abderrahim; Benzarti, Karim;This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Benzarti, Karim; Boudenne, Abderrahim; Eddhahak, Anissa; Duc, Myriam;handle: 10985/22715
This study investigates the mechanical and thermophysical performance of cement mortars incorporating microencapsulated phase change materials (mPCMs), which consist of an aqueous dispersion of 100% bio-based fine core–shell particles. A specific protocol was used to manufacture the mortar samples, which ensures a homogeneous particle distribution and prevents microcapsule leakage. The addition of mPCMs to the mortar causesboth a decrease in density, an increase in porosity, and a substantial loss of mechanical strength. Conversely, hotdisk characterization revealed a large improvement in the thermal performance. The system containing 8 wt% mPCMs exhibits a good balance between its mechanical and thermal properties.
HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 83 Powered bymore_vert HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Benzarti, Karim; Boudenne, Abderrahim; Eddhahak, Anissa; Duc, Myriam;handle: 10985/22715
This study investigates the mechanical and thermophysical performance of cement mortars incorporating microencapsulated phase change materials (mPCMs), which consist of an aqueous dispersion of 100% bio-based fine core–shell particles. A specific protocol was used to manufacture the mortar samples, which ensures a homogeneous particle distribution and prevents microcapsule leakage. The addition of mPCMs to the mortar causesboth a decrease in density, an increase in porosity, and a substantial loss of mechanical strength. Conversely, hotdisk characterization revealed a large improvement in the thermal performance. The system containing 8 wt% mPCMs exhibits a good balance between its mechanical and thermal properties.
HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 83 Powered bymore_vert HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Chennouf, Nawal; Agoudjil, Boudjemaa; Alioua, Tarek; Boudenne, Abderrahim; Benzarti, Karim;Abstract In the present work, the hygrothermal behavior of a wall structure made of a novel biobased material, i.e. date palm fiber reinforced concrete was investigated. In this context, a specific setup was developed which allows simulating a bi-climatic environment with separate outdoor and indoor environments. This device made it possible to apply various scenarios of static / dynamic hygrothermal loading to the outer side of wall, involving variation/cycling of temperature (T) and /or relative humidity (RH). During these experiments, resulting variations of T and RH across the wall thickness were monitored with in-situ sensors. Outstanding thermo-hygric phenomena were highlighted, such as high coupling effect between heat and moisture transfers, resulting from evaporation-condensation and sorption-desorption processes. Besides, significant thermal and hygric inertia was observed through the Date Palme Concrete (DPC) wall. The response time of this DPC wall to temperature variations remains shorter than in the case of humidity variations. Even so, large damping effect is obtained compared to outdoor boundary conditions, which make this DPC wall a good candidate for mitigating overheating during summertime and reducing interstitial condensation as well.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Chennouf, Nawal; Agoudjil, Boudjemaa; Alioua, Tarek; Boudenne, Abderrahim; Benzarti, Karim;Abstract In the present work, the hygrothermal behavior of a wall structure made of a novel biobased material, i.e. date palm fiber reinforced concrete was investigated. In this context, a specific setup was developed which allows simulating a bi-climatic environment with separate outdoor and indoor environments. This device made it possible to apply various scenarios of static / dynamic hygrothermal loading to the outer side of wall, involving variation/cycling of temperature (T) and /or relative humidity (RH). During these experiments, resulting variations of T and RH across the wall thickness were monitored with in-situ sensors. Outstanding thermo-hygric phenomena were highlighted, such as high coupling effect between heat and moisture transfers, resulting from evaporation-condensation and sorption-desorption processes. Besides, significant thermal and hygric inertia was observed through the Date Palme Concrete (DPC) wall. The response time of this DPC wall to temperature variations remains shorter than in the case of humidity variations. Even so, large damping effect is obtained compared to outdoor boundary conditions, which make this DPC wall a good candidate for mitigating overheating during summertime and reducing interstitial condensation as well.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Belloum, Rahma; Chennouf, Nawal; Agoudjil, Boudjemaa; Boudenne, Abderrahim; Benzarti, Karim;This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Belloum, Rahma; Chennouf, Nawal; Agoudjil, Boudjemaa; Boudenne, Abderrahim; Benzarti, Karim;This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Benzarti, Karim; Boudenne, Abderrahim; Eddhahak, Anissa; Duc, Myriam;handle: 10985/22715
This study investigates the mechanical and thermophysical performance of cement mortars incorporating microencapsulated phase change materials (mPCMs), which consist of an aqueous dispersion of 100% bio-based fine core–shell particles. A specific protocol was used to manufacture the mortar samples, which ensures a homogeneous particle distribution and prevents microcapsule leakage. The addition of mPCMs to the mortar causesboth a decrease in density, an increase in porosity, and a substantial loss of mechanical strength. Conversely, hotdisk characterization revealed a large improvement in the thermal performance. The system containing 8 wt% mPCMs exhibits a good balance between its mechanical and thermal properties.
HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 83 Powered bymore_vert HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Gbekou, Franck Komi; Benzarti, Karim; Boudenne, Abderrahim; Eddhahak, Anissa; Duc, Myriam;handle: 10985/22715
This study investigates the mechanical and thermophysical performance of cement mortars incorporating microencapsulated phase change materials (mPCMs), which consist of an aqueous dispersion of 100% bio-based fine core–shell particles. A specific protocol was used to manufacture the mortar samples, which ensures a homogeneous particle distribution and prevents microcapsule leakage. The addition of mPCMs to the mortar causesboth a decrease in density, an increase in porosity, and a substantial loss of mechanical strength. Conversely, hotdisk characterization revealed a large improvement in the thermal performance. The system containing 8 wt% mPCMs exhibits a good balance between its mechanical and thermal properties.
HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 45visibility views 45 download downloads 83 Powered bymore_vert HAL UPEC arrow_drop_down Construction and Building MaterialsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2022.129056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Chennouf, Nawal; Agoudjil, Boudjemaa; Alioua, Tarek; Boudenne, Abderrahim; Benzarti, Karim;Abstract In the present work, the hygrothermal behavior of a wall structure made of a novel biobased material, i.e. date palm fiber reinforced concrete was investigated. In this context, a specific setup was developed which allows simulating a bi-climatic environment with separate outdoor and indoor environments. This device made it possible to apply various scenarios of static / dynamic hygrothermal loading to the outer side of wall, involving variation/cycling of temperature (T) and /or relative humidity (RH). During these experiments, resulting variations of T and RH across the wall thickness were monitored with in-situ sensors. Outstanding thermo-hygric phenomena were highlighted, such as high coupling effect between heat and moisture transfers, resulting from evaporation-condensation and sorption-desorption processes. Besides, significant thermal and hygric inertia was observed through the Date Palme Concrete (DPC) wall. The response time of this DPC wall to temperature variations remains shorter than in the case of humidity variations. Even so, large damping effect is obtained compared to outdoor boundary conditions, which make this DPC wall a good candidate for mitigating overheating during summertime and reducing interstitial condensation as well.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Chennouf, Nawal; Agoudjil, Boudjemaa; Alioua, Tarek; Boudenne, Abderrahim; Benzarti, Karim;Abstract In the present work, the hygrothermal behavior of a wall structure made of a novel biobased material, i.e. date palm fiber reinforced concrete was investigated. In this context, a specific setup was developed which allows simulating a bi-climatic environment with separate outdoor and indoor environments. This device made it possible to apply various scenarios of static / dynamic hygrothermal loading to the outer side of wall, involving variation/cycling of temperature (T) and /or relative humidity (RH). During these experiments, resulting variations of T and RH across the wall thickness were monitored with in-situ sensors. Outstanding thermo-hygric phenomena were highlighted, such as high coupling effect between heat and moisture transfers, resulting from evaporation-condensation and sorption-desorption processes. Besides, significant thermal and hygric inertia was observed through the Date Palme Concrete (DPC) wall. The response time of this DPC wall to temperature variations remains shorter than in the case of humidity variations. Even so, large damping effect is obtained compared to outdoor boundary conditions, which make this DPC wall a good candidate for mitigating overheating during summertime and reducing interstitial condensation as well.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu