- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Emilio Molina-Grima; A. San Pedro; C.V. González-López; Francisco Gabriel Acién;pmid: 25108265
This work studied outdoor pilot scale production of Nannochloropsis gaditana in tubular photobioreactors. The growth and biomass composition of the strain were studied under different culture strategies: continuous-mode (varying nutrient supply and dilution rate) and two-stage cultures aiming lipid enhancement. Besides, parameters such as irradiance, specific nitrate input and dilution rate were used to obtain models predicting growth, lipid and fatty acids production rates. The range of optimum dilution rate was 0.31-0.351/day with maximum biomass, lipid and fatty acids productivities of 590, 110 and 66.8 mg/l day, respectively. Nitrate limitation led to an increase in lipid and fatty acids contents (from 20.5% to 38.0% and from 16.9% to 23.5%, respectively). Two-stage culture strategy provided similar fatty acids productivities (56.4 mg/l day) but the neutral lipids content was doubled.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2012Publisher:Humana Press Authors: José M. Fernández-Sevilla; F. Gabriel Acién Fernández; Emilio Molina Grima;pmid: 22623312
Lutein extracts are in increasing demand due to their alleged role in the prevention of degenerative disorders such as age-related macular degeneration (AMD). Lutein extracts are currently obtained from plant sources, but microalgae have been demonstrated to be a competitive source likely to become an alternative. The extraction of lutein from microalgae posesses specific problems that arise from the different structure and composition of the source biomass. Here is presented a method for the recovery of lutein-rich carotenoid extracts from microalgal biomass in the kilogram scale.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-61779-879-5_19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-61779-879-5_19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors: Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Jiménez Callejón, María José; +4 AuthorsNavarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Jiménez Callejón, María José; Esteban Cerdán, Luis; Martín Valverde, Lorena; Castillo López, Beatriz; Molina Grima, Emilio;Fatty acid methyl esters (FAMEs, biodiesel) were produced from Nannochloropsis gaditana wet biomass (12% saponifiable lipids, SLs) by extraction of SLs and lipase catalyzed transesterification. Lipids were extracted by ethanol (96%)-hexane, and 31% pure SLs were obtained with 85% yield. When the lipids were degummed, SL purity increased to 95%. Novozym 435 was selected from four lipases tested. Both the lipidic composition and the use of t-butanol instead of hexane increased the reaction velocity and the conversion, since both decreased due to the adsorption of polar lipids on the lipase immobilization support. The best FAME yield (94.7%) was attained at a reaction time of 48h and using 10mL of t-butanol/g SL, 0.225gN435/g SL, 11:1 methanol/SL molar ratio and adding the methanol in three steps. In these conditions the FAME conversion decreased by 9.8% after three reaction cycles catalyzed by the same lipase batch.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.03.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.03.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: Francisco Gabriel Acién-Fernández; José M. Fernández-Sevilla; M.C. Cerón-García; A. M. González-Céspedes; +2 AuthorsFrancisco Gabriel Acién-Fernández; José M. Fernández-Sevilla; M.C. Cerón-García; A. M. González-Céspedes; J. Camacho-Rodríguez; Emilio Molina-Grima;pmid: 24318007
Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day(-1)) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l(-1) day(-1) (peak 0.4 g l(-1) day(-1)) at 0.4 day(-1) in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l(-1) day(-1).
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-013-5413-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-013-5413-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: López Rodríguez, Mercedes; Cerón García, Maria del Carmen; López Rosales, Lorenzo; González López, Cynthia Victoria; +5 AuthorsLópez Rodríguez, Mercedes; Cerón García, Maria del Carmen; López Rosales, Lorenzo; González López, Cynthia Victoria; Molina Miras, Alejandro; Ramírez González, Aida; Sánchez Mirón, Asterio; García Camcho, Francisco; Molina Grima, Emilio;Sustainable dinoflagellate microalgae-based bioprocess designed to produce secondary metabolites (SMs) with interesting bioactivities are attracting increasing attention. However, dinoflagellates also produce other valuable bioproducts (e.g polyunsaturated fatty acids, carotenoids, etc.) that could be recovered and should therefore be taken into account in the bioprocess. In this study, biomass of the marine dinoflagellate microalga Amphidinium carterae was used to assess and optimise three different methods in order to obtain three families of high-value biochemical compounds present in the biomass. The existing processes encompassed a multi-step extraction process for carotenoids, fatty acids and APDs individually and are optimized for the integral valorization of raw A. carterae biomass, with SMs being the primary target compounds. Total process recovery yields were 97% for carotenoids, 80% for total fatty acids and 100% for an extract rich in APDs (not purified).
riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Hita Peña, Estrella; Robles Medina, Alfonso; Jiménez Callejón, María José; Macías Sánchez, María Dolores; +3 AuthorsHita Peña, Estrella; Robles Medina, Alfonso; Jiménez Callejón, María José; Macías Sánchez, María Dolores; Esteban Cerdán, Luis; González Moreno, Pedro Antonio; Molina Grima, Emilio;Abstract The objective of this work is to develop a process for producing biodiesel from the saponifiable lipid (SL) fraction of the wet microalgal biomass Nannochloropsis gaditana . The method consists of five steps. Firstly, crude fatty acid salt extraction was carried out using a KOH-ethanol (96%) solution, which allows one to extract the SLs as potassium salts. This transformation permits better separation of the unsaponifiable lipids (the second step) and finally produces purer biodiesel. The unsaponifiable lipids were then separated with hexane, after establishing the ethanol-water solution water content at 30% w/w. Some unsaponifiable lipids (carotenoids and phytosterols) are products of interest that might be purified from this fraction thus helping to improve the process's profitability. Thirdly, free fatty acids (FFAs) were purified by acidification of the ethanol-water solution to pH 5 and were then extracted with hexane. Fourthly, the FFAs were transformed to biodiesel by esterification with excess of methanol catalyzed using sulphuric acid, removing the excess by washing with hot water. Under these conditions the biodiesel purity and yield were 74.8% and 82% w/w, respectively. Finally, the biodiesel was clarified/purified up to 96.5% purity by adsorption with bentonite. The final biodiesel yield was 80.9%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: J. M. Fernández Sevilla; T.A. Egorova-Zachernyuk; E. Molina Grima; F.G. Acién Fernández;pmid: 16257578
The present study outlines a process for the cost-effective production of 13C/15N-labelled biomass of microalgae on a commercial scale. The core of the process is a bubble column photobioreactor with exhaust gas recirculation by means of a low-pressure compressor. To avoid accumulation of dissolved oxygen in the culture, the exhaust gas is bubbled through a sodium sulphite solution prior to its return to the reactor. The engineered system can be used for the production of 13C, 15N, and 13C-15N stable isotope-labelled biomass as required. To produce 13C-labelled biomass, 13CO2 is injected on demand for pH control and carbon supply, whereas for 15N-labelled biomass Na15NO3 is supplied as nitrogen source at the stochiometric concentration. The reactor is operated in semicontinuous mode at different biomass concentrations, yielding a maximum mean biomass productivity of 0.3 gL(-1) day(-1). In order to maximize the uptake efficiency of the labelled substrates, the inorganic carbon is recovered from the supernatant by acidification/desorption processes, while the nitrate is delivered at stochiometric concentration and the harvesting of biomass is performed when the 15NO3- is depleted. In these conditions, elemental analysis of both biomass and supernatant shows that 89.2% of the injected carbon is assimilated into the biomass and 6.9% remains in the supernatant. Based on elemental analysis, 97.8% of the supplied nitrogen is assimilated into the biomass and 1.3% remains in the supernatant. Stable isotope-labelling enrichment has been analysed by GC-MS results showing that the biomass is highly labelled. All the fatty acids are labelled; more than 96% of the carbon present in these fatty acids is 13C. The engineered system was stably operated for 3 months, producing over 160 g of 13C and/or 15N-labelled biomass. The engineered bioreactor can be applied for the labelling of various microalgae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioeng.2005.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioeng.2005.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 SpainPublisher:Elsevier BV Joaquín Rivas; E. Molina Grima; J. M. Fernández Sevilla; F.G. Acién Fernández; M.C. García-Malea López; E. Del Río Sánchez; J.L. Casas López; Miguel G. Guerrero;The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2006 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2005.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 119 citations 119 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 47 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2006 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2005.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors: Castillo López, Beatriz; Esteban Cerdán, Luis; Robles Medina, Alfonso; Navarro López, Elvira; +4 AuthorsCastillo López, Beatriz; Esteban Cerdán, Luis; Robles Medina, Alfonso; Navarro López, Elvira; Martín Valverde, Lorena; Hita Peña, Estrella; González Moreno, Pedro Antonio; Molina Grima, Emilio;The aim of this work was to obtain biodiesel (methyl esters) from the saponifiable lipids (SLs) fraction of the microalga Nannochloropsis gaditana, whose biomass dry weight contains 12.1 wt% of these lipids. SLs were extracted from the microalga as free fatty acids (FFAs) for subsequent transformation to methyl esters (biodiesel) by enzymatic esterification. Extraction as FFAs rather than as SLs allows them to be obtained with higher purity. Microalgal FFAs were obtained by direct saponification of lipids in the biomass and subsequent extraction-purification with hexane. Esterification of FFAs with methanol was catalysed by lipase Novozym 435 from Candida antarctica. Stability studies of this lipase in the operational conditions showed that the esterification degree (ED) attained with the same batch of lipase remained constant over six reaction cycles (36 h total reaction time). The optimal conditions attained for 4 g of FFAs were 25°C, 200 rpm, methanol/FFA molar ratio of 1.5:1, Novozym 435/FFA ratio of 0.025:1 w/w and 4 h reaction time. In these conditions the ED attained was 92.6%, producing a biodiesel with 83 wt% purity from microalgal FFAs. Several experimental scales were tested (from 4 to 40 g FFAs), and in all cases similar EDs were obtained.
riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Bioscience and BioengineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiosc.2014.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Bioscience and BioengineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiosc.2014.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Authors: José M. Fernández-Sevilla; J. Pérez-Parra; Juan Fernández Sánchez; Emilio Molina-Grima; +2 AuthorsJosé M. Fernández-Sevilla; J. Pérez-Parra; Juan Fernández Sánchez; Emilio Molina-Grima; Francisco Gabriel Acién; M. C. Cerón;pmid: 18491039
In this paper, the biomass and lutein productivity of the lutein-rich new strain Scenedesmus almeriensis is modelled versus irradiance and temperature. The results demonstrate that S. almeriensis is a mesophile microorganism with an optimal growth temperature of 35 degrees C, and capable of withstanding up to 48 degrees C, which caused culture death. This strain is also tolerant to high irradiances, showing no signs of photoinhibition even at the maximum irradiance essayed of 1625 microE m(-2) s(-1) accumulating up to 0.55% dry weight (d.wt.) of lutein. The optimal conditions that maximise the biomass productivity also favour the lutein productivity, lutein being a primary metabolite. Maximal biomass and lutein productivities of 0.87 g l(-1) day(-1) and 4.77 mg l(-1) day(-1), respectively, were measured. The analysis of light availability inside the cultures, quantified as average irradiance, demonstrates that the cultures were mainly photo-limited, although photosaturation also took place at high external irradiances. The effect of temperature was also investigated finding that the specific maximal growth rate is modified by the temperature according to the Arrhenius equation. The influence of both light availability and temperature was included in an overall growth model, which showed, as a result, capable of fitting the whole set of experimental data. An overall lutein accumulation rate model was also proposed and used in a regression analysis. Simulations performed using the proposed models show that under outdoor conditions a biomass productivity of 0.95 g l(-1) day(-1) can be expected, with a lutein productivity up to 5.31 mg l(-1) day(-1). These models may be useful to assist the design and operation optimisation of outdoor cultures of this strain.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-008-1494-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu206 citations 206 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-008-1494-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Emilio Molina-Grima; A. San Pedro; C.V. González-López; Francisco Gabriel Acién;pmid: 25108265
This work studied outdoor pilot scale production of Nannochloropsis gaditana in tubular photobioreactors. The growth and biomass composition of the strain were studied under different culture strategies: continuous-mode (varying nutrient supply and dilution rate) and two-stage cultures aiming lipid enhancement. Besides, parameters such as irradiance, specific nitrate input and dilution rate were used to obtain models predicting growth, lipid and fatty acids production rates. The range of optimum dilution rate was 0.31-0.351/day with maximum biomass, lipid and fatty acids productivities of 590, 110 and 66.8 mg/l day, respectively. Nitrate limitation led to an increase in lipid and fatty acids contents (from 20.5% to 38.0% and from 16.9% to 23.5%, respectively). Two-stage culture strategy provided similar fatty acids productivities (56.4 mg/l day) but the neutral lipids content was doubled.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu91 citations 91 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2012Publisher:Humana Press Authors: José M. Fernández-Sevilla; F. Gabriel Acién Fernández; Emilio Molina Grima;pmid: 22623312
Lutein extracts are in increasing demand due to their alleged role in the prevention of degenerative disorders such as age-related macular degeneration (AMD). Lutein extracts are currently obtained from plant sources, but microalgae have been demonstrated to be a competitive source likely to become an alternative. The extraction of lutein from microalgae posesses specific problems that arise from the different structure and composition of the source biomass. Here is presented a method for the recovery of lutein-rich carotenoid extracts from microalgal biomass in the kilogram scale.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-61779-879-5_19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-1-...Part of book or chapter of book . 2012 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-1-61779-879-5_19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors: Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Jiménez Callejón, María José; +4 AuthorsNavarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Jiménez Callejón, María José; Esteban Cerdán, Luis; Martín Valverde, Lorena; Castillo López, Beatriz; Molina Grima, Emilio;Fatty acid methyl esters (FAMEs, biodiesel) were produced from Nannochloropsis gaditana wet biomass (12% saponifiable lipids, SLs) by extraction of SLs and lipase catalyzed transesterification. Lipids were extracted by ethanol (96%)-hexane, and 31% pure SLs were obtained with 85% yield. When the lipids were degummed, SL purity increased to 95%. Novozym 435 was selected from four lipases tested. Both the lipidic composition and the use of t-butanol instead of hexane increased the reaction velocity and the conversion, since both decreased due to the adsorption of polar lipids on the lipase immobilization support. The best FAME yield (94.7%) was attained at a reaction time of 48h and using 10mL of t-butanol/g SL, 0.225gN435/g SL, 11:1 methanol/SL molar ratio and adding the methanol in three steps. In these conditions the FAME conversion decreased by 9.8% after three reaction cycles catalyzed by the same lipase batch.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.03.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.03.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: Francisco Gabriel Acién-Fernández; José M. Fernández-Sevilla; M.C. Cerón-García; A. M. González-Céspedes; +2 AuthorsFrancisco Gabriel Acién-Fernández; José M. Fernández-Sevilla; M.C. Cerón-García; A. M. González-Céspedes; J. Camacho-Rodríguez; Emilio Molina-Grima;pmid: 24318007
Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day(-1)) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l(-1) day(-1) (peak 0.4 g l(-1) day(-1)) at 0.4 day(-1) in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l(-1) day(-1).
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-013-5413-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-013-5413-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: López Rodríguez, Mercedes; Cerón García, Maria del Carmen; López Rosales, Lorenzo; González López, Cynthia Victoria; +5 AuthorsLópez Rodríguez, Mercedes; Cerón García, Maria del Carmen; López Rosales, Lorenzo; González López, Cynthia Victoria; Molina Miras, Alejandro; Ramírez González, Aida; Sánchez Mirón, Asterio; García Camcho, Francisco; Molina Grima, Emilio;Sustainable dinoflagellate microalgae-based bioprocess designed to produce secondary metabolites (SMs) with interesting bioactivities are attracting increasing attention. However, dinoflagellates also produce other valuable bioproducts (e.g polyunsaturated fatty acids, carotenoids, etc.) that could be recovered and should therefore be taken into account in the bioprocess. In this study, biomass of the marine dinoflagellate microalga Amphidinium carterae was used to assess and optimise three different methods in order to obtain three families of high-value biochemical compounds present in the biomass. The existing processes encompassed a multi-step extraction process for carotenoids, fatty acids and APDs individually and are optimized for the integral valorization of raw A. carterae biomass, with SMs being the primary target compounds. Total process recovery yields were 97% for carotenoids, 80% for total fatty acids and 100% for an extract rich in APDs (not purified).
riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Hita Peña, Estrella; Robles Medina, Alfonso; Jiménez Callejón, María José; Macías Sánchez, María Dolores; +3 AuthorsHita Peña, Estrella; Robles Medina, Alfonso; Jiménez Callejón, María José; Macías Sánchez, María Dolores; Esteban Cerdán, Luis; González Moreno, Pedro Antonio; Molina Grima, Emilio;Abstract The objective of this work is to develop a process for producing biodiesel from the saponifiable lipid (SL) fraction of the wet microalgal biomass Nannochloropsis gaditana . The method consists of five steps. Firstly, crude fatty acid salt extraction was carried out using a KOH-ethanol (96%) solution, which allows one to extract the SLs as potassium salts. This transformation permits better separation of the unsaponifiable lipids (the second step) and finally produces purer biodiesel. The unsaponifiable lipids were then separated with hexane, after establishing the ethanol-water solution water content at 30% w/w. Some unsaponifiable lipids (carotenoids and phytosterols) are products of interest that might be purified from this fraction thus helping to improve the process's profitability. Thirdly, free fatty acids (FFAs) were purified by acidification of the ethanol-water solution to pH 5 and were then extracted with hexane. Fourthly, the FFAs were transformed to biodiesel by esterification with excess of methanol catalyzed using sulphuric acid, removing the excess by washing with hot water. Under these conditions the biodiesel purity and yield were 74.8% and 82% w/w, respectively. Finally, the biodiesel was clarified/purified up to 96.5% purity by adsorption with bentonite. The final biodiesel yield was 80.9%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2014.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: J. M. Fernández Sevilla; T.A. Egorova-Zachernyuk; E. Molina Grima; F.G. Acién Fernández;pmid: 16257578
The present study outlines a process for the cost-effective production of 13C/15N-labelled biomass of microalgae on a commercial scale. The core of the process is a bubble column photobioreactor with exhaust gas recirculation by means of a low-pressure compressor. To avoid accumulation of dissolved oxygen in the culture, the exhaust gas is bubbled through a sodium sulphite solution prior to its return to the reactor. The engineered system can be used for the production of 13C, 15N, and 13C-15N stable isotope-labelled biomass as required. To produce 13C-labelled biomass, 13CO2 is injected on demand for pH control and carbon supply, whereas for 15N-labelled biomass Na15NO3 is supplied as nitrogen source at the stochiometric concentration. The reactor is operated in semicontinuous mode at different biomass concentrations, yielding a maximum mean biomass productivity of 0.3 gL(-1) day(-1). In order to maximize the uptake efficiency of the labelled substrates, the inorganic carbon is recovered from the supernatant by acidification/desorption processes, while the nitrate is delivered at stochiometric concentration and the harvesting of biomass is performed when the 15NO3- is depleted. In these conditions, elemental analysis of both biomass and supernatant shows that 89.2% of the injected carbon is assimilated into the biomass and 6.9% remains in the supernatant. Based on elemental analysis, 97.8% of the supplied nitrogen is assimilated into the biomass and 1.3% remains in the supernatant. Stable isotope-labelling enrichment has been analysed by GC-MS results showing that the biomass is highly labelled. All the fatty acids are labelled; more than 96% of the carbon present in these fatty acids is 13C. The engineered system was stably operated for 3 months, producing over 160 g of 13C and/or 15N-labelled biomass. The engineered bioreactor can be applied for the labelling of various microalgae.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioeng.2005.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioeng.2005.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 SpainPublisher:Elsevier BV Joaquín Rivas; E. Molina Grima; J. M. Fernández Sevilla; F.G. Acién Fernández; M.C. García-Malea López; E. Del Río Sánchez; J.L. Casas López; Miguel G. Guerrero;The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2006 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2005.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 119 citations 119 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 47 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2006 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiotec.2005.11.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Authors: Castillo López, Beatriz; Esteban Cerdán, Luis; Robles Medina, Alfonso; Navarro López, Elvira; +4 AuthorsCastillo López, Beatriz; Esteban Cerdán, Luis; Robles Medina, Alfonso; Navarro López, Elvira; Martín Valverde, Lorena; Hita Peña, Estrella; González Moreno, Pedro Antonio; Molina Grima, Emilio;The aim of this work was to obtain biodiesel (methyl esters) from the saponifiable lipids (SLs) fraction of the microalga Nannochloropsis gaditana, whose biomass dry weight contains 12.1 wt% of these lipids. SLs were extracted from the microalga as free fatty acids (FFAs) for subsequent transformation to methyl esters (biodiesel) by enzymatic esterification. Extraction as FFAs rather than as SLs allows them to be obtained with higher purity. Microalgal FFAs were obtained by direct saponification of lipids in the biomass and subsequent extraction-purification with hexane. Esterification of FFAs with methanol was catalysed by lipase Novozym 435 from Candida antarctica. Stability studies of this lipase in the operational conditions showed that the esterification degree (ED) attained with the same batch of lipase remained constant over six reaction cycles (36 h total reaction time). The optimal conditions attained for 4 g of FFAs were 25°C, 200 rpm, methanol/FFA molar ratio of 1.5:1, Novozym 435/FFA ratio of 0.025:1 w/w and 4 h reaction time. In these conditions the ED attained was 92.6%, producing a biodiesel with 83 wt% purity from microalgal FFAs. Several experimental scales were tested (from 4 to 40 g FFAs), and in all cases similar EDs were obtained.
riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Bioscience and BioengineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiosc.2014.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert riUAL - Repositorio ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Bioscience and BioengineeringArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jbiosc.2014.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Authors: José M. Fernández-Sevilla; J. Pérez-Parra; Juan Fernández Sánchez; Emilio Molina-Grima; +2 AuthorsJosé M. Fernández-Sevilla; J. Pérez-Parra; Juan Fernández Sánchez; Emilio Molina-Grima; Francisco Gabriel Acién; M. C. Cerón;pmid: 18491039
In this paper, the biomass and lutein productivity of the lutein-rich new strain Scenedesmus almeriensis is modelled versus irradiance and temperature. The results demonstrate that S. almeriensis is a mesophile microorganism with an optimal growth temperature of 35 degrees C, and capable of withstanding up to 48 degrees C, which caused culture death. This strain is also tolerant to high irradiances, showing no signs of photoinhibition even at the maximum irradiance essayed of 1625 microE m(-2) s(-1) accumulating up to 0.55% dry weight (d.wt.) of lutein. The optimal conditions that maximise the biomass productivity also favour the lutein productivity, lutein being a primary metabolite. Maximal biomass and lutein productivities of 0.87 g l(-1) day(-1) and 4.77 mg l(-1) day(-1), respectively, were measured. The analysis of light availability inside the cultures, quantified as average irradiance, demonstrates that the cultures were mainly photo-limited, although photosaturation also took place at high external irradiances. The effect of temperature was also investigated finding that the specific maximal growth rate is modified by the temperature according to the Arrhenius equation. The influence of both light availability and temperature was included in an overall growth model, which showed, as a result, capable of fitting the whole set of experimental data. An overall lutein accumulation rate model was also proposed and used in a regression analysis. Simulations performed using the proposed models show that under outdoor conditions a biomass productivity of 0.95 g l(-1) day(-1) can be expected, with a lutein productivity up to 5.31 mg l(-1) day(-1). These models may be useful to assist the design and operation optimisation of outdoor cultures of this strain.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-008-1494-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu206 citations 206 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2008 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-008-1494-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu