- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Italy, ItalyPublisher:Elsevier BV Publicly fundedAuthors: Ghaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; +10 AuthorsAcuna, M
Acuna, M in OpenAIREGhaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; Gallagher, Tom;Acuna, M
Acuna, M in OpenAIREKuhmaier, Martin;
Kuhmaier, Martin
Kuhmaier, Martin in OpenAIRESpinelli, Raffaele;
Visser, Rien; Devlin, Ger;Spinelli, Raffaele
Spinelli, Raffaele in OpenAIREEliasson, Lars;
Laitila, Juha; Liana, Ruben; Wide, Maria Iwarsson;Eliasson, Lars
Eliasson, Lars in OpenAIREEgnell, Gustaf;
Egnell, Gustaf
Egnell, Gustaf in OpenAIREhandle: 20.500.14243/359628
This study provides a state-of-the art overview of forest biomass harvesting technologies and supply chains used in North America, Europe and the Southern Hemisphere. The productivity and cost of selected efficient technologies is presented for each country with a brief description about the source of the biomass and harvesting method. Expert opinions on the most successful biomass operations have been presented briefly for each country. The main conclusions from various intentional studies are provided in addition to future requirements for research and development. This report can be a useful high level guide of technology and supply chain selection for industry and academics.
CNR ExploRA arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Italy, ItalyPublisher:Elsevier BV Publicly fundedAuthors: Ghaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; +10 AuthorsAcuna, M
Acuna, M in OpenAIREGhaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; Gallagher, Tom;Acuna, M
Acuna, M in OpenAIREKuhmaier, Martin;
Kuhmaier, Martin
Kuhmaier, Martin in OpenAIRESpinelli, Raffaele;
Visser, Rien; Devlin, Ger;Spinelli, Raffaele
Spinelli, Raffaele in OpenAIREEliasson, Lars;
Laitila, Juha; Liana, Ruben; Wide, Maria Iwarsson;Eliasson, Lars
Eliasson, Lars in OpenAIREEgnell, Gustaf;
Egnell, Gustaf
Egnell, Gustaf in OpenAIREhandle: 20.500.14243/359628
This study provides a state-of-the art overview of forest biomass harvesting technologies and supply chains used in North America, Europe and the Southern Hemisphere. The productivity and cost of selected efficient technologies is presented for each country with a brief description about the source of the biomass and harvesting method. Expert opinions on the most successful biomass operations have been presented briefly for each country. The main conclusions from various intentional studies are provided in addition to future requirements for research and development. This report can be a useful high level guide of technology and supply chain selection for industry and academics.
CNR ExploRA arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:MDPI AG Authors:Heesung Woo;
Heesung Woo
Heesung Woo in OpenAIREMauricio Acuna;
Seungwan Cho;Mauricio Acuna
Mauricio Acuna in OpenAIREJoowon Park;
Joowon Park
Joowon Park in OpenAIREdoi: 10.3390/f10111018
As a part of the renewable energy cycle, forest biomass resources are considered to be important renewable materials and energy sources in many countries. It is evident from international and local research into forest biomass utilization that several challenges must be addressed to ensure logging waste can be transformed into material of commercial value. Several logistical and supply chain challenges have already been identified, including uncertainty about the nature, amount, and quality of forest residues. In this context, this paper presents a summary review of estimation methods and techniques for managing forest and woody residue along the timber supply chain. The review examines both the opportunities and the challenges evident in the international forest residue estimation methods within each supply chain for primary and secondary forest resources. The review also discusses techniques for supply chain and management planning and highlights the limitations of existing information and communication technology (ICT) implemented for forest biomass research.
Forests arrow_drop_down USC Research Bank research dataArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10111018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down USC Research Bank research dataArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10111018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:MDPI AG Authors:Heesung Woo;
Heesung Woo
Heesung Woo in OpenAIREMauricio Acuna;
Seungwan Cho;Mauricio Acuna
Mauricio Acuna in OpenAIREJoowon Park;
Joowon Park
Joowon Park in OpenAIREdoi: 10.3390/f10111018
As a part of the renewable energy cycle, forest biomass resources are considered to be important renewable materials and energy sources in many countries. It is evident from international and local research into forest biomass utilization that several challenges must be addressed to ensure logging waste can be transformed into material of commercial value. Several logistical and supply chain challenges have already been identified, including uncertainty about the nature, amount, and quality of forest residues. In this context, this paper presents a summary review of estimation methods and techniques for managing forest and woody residue along the timber supply chain. The review examines both the opportunities and the challenges evident in the international forest residue estimation methods within each supply chain for primary and secondary forest resources. The review also discusses techniques for supply chain and management planning and highlights the limitations of existing information and communication technology (ICT) implemented for forest biomass research.
Forests arrow_drop_down USC Research Bank research dataArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10111018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down USC Research Bank research dataArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f10111018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Mauricio Acuna;
Sandra Sánchez-García; Elena Canga;Mauricio Acuna
Mauricio Acuna in OpenAIREdoi: 10.3390/f13050701
In-forest drying of roundwood and biomass (residues) can result in more efficient transport operations from an economical and environmental perspective. On the negative side, in-forest drying may result in dry matter losses (DML), impacting the quantity and quality of residues delivered to energy plants. This paper investigated the impact of roundwood and residues in-forest drying and DML on supply chain costs and Greenhouse Gas (GHG) emissions. For the assessment, a short-term optimization planning tool was applied to a supply chain located in Asturias, Spain, consisting of fourteen supply points and two demand points: A pulp mill (demanding roundwood) and a power plant (demanding residues). Four scenarios were included in the analysis comprising different combinations of DML for roundwood and residues resulting from in-forest drying. Our results indicate that in scenarios that include in-forest drying and DML, the negative economic effects are offset by the substantial reductions in transport costs and GHG emissions. In-forest drying of roundwood and residues without DML can result in a 6.5% reduction in supply chain costs, 14.9% fewer truckloads to destination points, and 18.1% less fuel consumption and GHG emissions.
Forests arrow_drop_down ForestsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1999-4907/13/5/701/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f13050701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1999-4907/13/5/701/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f13050701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Mauricio Acuna;
Sandra Sánchez-García; Elena Canga;Mauricio Acuna
Mauricio Acuna in OpenAIREdoi: 10.3390/f13050701
In-forest drying of roundwood and biomass (residues) can result in more efficient transport operations from an economical and environmental perspective. On the negative side, in-forest drying may result in dry matter losses (DML), impacting the quantity and quality of residues delivered to energy plants. This paper investigated the impact of roundwood and residues in-forest drying and DML on supply chain costs and Greenhouse Gas (GHG) emissions. For the assessment, a short-term optimization planning tool was applied to a supply chain located in Asturias, Spain, consisting of fourteen supply points and two demand points: A pulp mill (demanding roundwood) and a power plant (demanding residues). Four scenarios were included in the analysis comprising different combinations of DML for roundwood and residues resulting from in-forest drying. Our results indicate that in scenarios that include in-forest drying and DML, the negative economic effects are offset by the substantial reductions in transport costs and GHG emissions. In-forest drying of roundwood and residues without DML can result in a 6.5% reduction in supply chain costs, 14.9% fewer truckloads to destination points, and 18.1% less fuel consumption and GHG emissions.
Forests arrow_drop_down ForestsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1999-4907/13/5/701/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f13050701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1999-4907/13/5/701/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f13050701&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Ireland, AustraliaPublisher:Elsevier BV Publicly fundedFunded by:National Council for Forest Research and DevelopmentNational Council for Forest Research and DevelopmentAuthors: Sosa, Amanda;Acuna, Mauricio;
Acuna, Mauricio
Acuna, Mauricio in OpenAIREMcDonnell, Kevin;
Devlin, Ger;McDonnell, Kevin
McDonnell, Kevin in OpenAIREhandle: 10197/6356
Abstract In the coming years, Ireland will continue to face an increasing demand for wood biomass as a renewable source of energy. This will result in strained supply/demand scenarios, which will call for new planning and logistics systems capable of optimizing the efficient use of the biomass resources. In this study, a linear programming tool was developed which includes moisture content (MC) as a driving factor for the cost optimisation of two supply chains that use short wood and whole trees from thinnings as material feedstock. The tool was designed and implemented to analyse the impact of moisture content and truck configurations (5-axle and 6-axle trucks) on supply chain costs and spatial distribution of the supply materials. The results indicate that the inclusion of wood chips from whole trees reduces the costs of wood energy supply in comparison with only producing wood chips from short wood to satisfy the demand, with 9.8% and 10.2% cost reduction when transported with 5-axle and 6-axle trucks respectively. Constraining the MC of the wood chips delivered to the power plant increases both transport and overall supply chain costs, due, firstly to an increase in the haulage distance and secondly, to the number of counties providing the biomass material. In terms of truck configuration, the use of 6-axle trucks resulted in a 14.8% reduction in the number of truckloads and a 12.3% reduction in haulage costs in comparison to the use of 5-axle trucks across the MC scenarios analysed.
Applied Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Ireland, AustraliaPublisher:Elsevier BV Publicly fundedFunded by:National Council for Forest Research and DevelopmentNational Council for Forest Research and DevelopmentAuthors: Sosa, Amanda;Acuna, Mauricio;
Acuna, Mauricio
Acuna, Mauricio in OpenAIREMcDonnell, Kevin;
Devlin, Ger;McDonnell, Kevin
McDonnell, Kevin in OpenAIREhandle: 10197/6356
Abstract In the coming years, Ireland will continue to face an increasing demand for wood biomass as a renewable source of energy. This will result in strained supply/demand scenarios, which will call for new planning and logistics systems capable of optimizing the efficient use of the biomass resources. In this study, a linear programming tool was developed which includes moisture content (MC) as a driving factor for the cost optimisation of two supply chains that use short wood and whole trees from thinnings as material feedstock. The tool was designed and implemented to analyse the impact of moisture content and truck configurations (5-axle and 6-axle trucks) on supply chain costs and spatial distribution of the supply materials. The results indicate that the inclusion of wood chips from whole trees reduces the costs of wood energy supply in comparison with only producing wood chips from short wood to satisfy the demand, with 9.8% and 10.2% cost reduction when transported with 5-axle and 6-axle trucks respectively. Constraining the MC of the wood chips delivered to the power plant increases both transport and overall supply chain costs, due, firstly to an increase in the haulage distance and secondly, to the number of counties providing the biomass material. In terms of truck configuration, the use of 6-axle trucks resulted in a 14.8% reduction in the number of truckloads and a 12.3% reduction in haulage costs in comparison to the use of 5-axle trucks across the MC scenarios analysed.
Applied Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Belgium, Germany, Italy, Italy, Finland, Finland, AustraliaPublisher:Elsevier BV Authors: Vanbeveren SPP;Spinelli R;
Spinelli R
Spinelli R in OpenAIREEisenbies M;
Eisenbies M
Eisenbies M in OpenAIRESchweier J;
+5 AuthorsSchweier J
Schweier J in OpenAIREVanbeveren SPP;Spinelli R;
Spinelli R
Spinelli R in OpenAIREEisenbies M;
Eisenbies M
Eisenbies M in OpenAIRESchweier J;
MolaYudego B;Schweier J
Schweier J in OpenAIREMagagnotti N;
Magagnotti N
Magagnotti N in OpenAIREAcuna M;
Dimitriou I;
Ceulemans R;Dimitriou I
Dimitriou I in OpenAIREShort-rotation coppice (SRC) is an important source of woody biomass for bioenergy. Despite the research carried out on several aspects of SRC production, many uncertainties create barriers to farmers establishing SRC plantations. One of the key economic sources of uncertainty is harvesting methods and costs; more specifically, the performance of contemporary machine methods is reviewed. We collected data from 25 literature references, describing 166 field trials. Three harvesting systems predominate: 127 used single pass cut-and-chip harvesters, 16 used double pass cut-and-store harvesters, 22 used the cut-and-bale harvester, and one study used a cut-and-billet harvester. Mean effective material capacity (EMC) was 30 Mg fresh weight h-1 (cut-and-chip technique), 19 Mg fresh weight h-1 (cut-and-store technique) and 14 Mg fresh weight h-1 (cut-and-bale technique). However, this comparison does not consider engine power, which varies with harvesting technique; cut-and-chip harvesters are by far the most powerful (>200 kW). When limiting harvesters to a maximum engine power of 200 kW, cut-and-chip harvesters achieved the lowest EMC (5 Mg fresh weight h-1), but they also perform a higher degree of material processing (cutting and chipping) than cut-and-store harvesters (only cutting) or than the cut-and-bale harvester (cutting and baling). The trend in commercial machinery is towards increased engine power for cut-and-chip and cut-and-store harvesters. No trends in EMC were documented for the recently developed cut-and-bale harvesting technique, which is presently produced in one version only. Field stocking (5-157 Mg fresh weight ha-1 in the reviewed studies) has a significant effect on harvester EMC. Lower field stocking can constrain the maximum EMC achieved by the machine given that harvesting speed can only be increased to a point. While the reviewed studies did not contain sufficient harvesting cost data for a thorough analysis, harvesting costs ranged between 6 and 99 EUR Mg-1 fresh weight.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.1016/j.rser.2017.02.059Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/137365Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Institutional Repository Universiteit AntwerpenArticle . 2017Data sources: Institutional Repository Universiteit AntwerpenUSC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.1016/j.rser.2017.02.059Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/137365Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Institutional Repository Universiteit AntwerpenArticle . 2017Data sources: Institutional Repository Universiteit AntwerpenUSC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Belgium, Germany, Italy, Italy, Finland, Finland, AustraliaPublisher:Elsevier BV Authors: Vanbeveren SPP;Spinelli R;
Spinelli R
Spinelli R in OpenAIREEisenbies M;
Eisenbies M
Eisenbies M in OpenAIRESchweier J;
+5 AuthorsSchweier J
Schweier J in OpenAIREVanbeveren SPP;Spinelli R;
Spinelli R
Spinelli R in OpenAIREEisenbies M;
Eisenbies M
Eisenbies M in OpenAIRESchweier J;
MolaYudego B;Schweier J
Schweier J in OpenAIREMagagnotti N;
Magagnotti N
Magagnotti N in OpenAIREAcuna M;
Dimitriou I;
Ceulemans R;Dimitriou I
Dimitriou I in OpenAIREShort-rotation coppice (SRC) is an important source of woody biomass for bioenergy. Despite the research carried out on several aspects of SRC production, many uncertainties create barriers to farmers establishing SRC plantations. One of the key economic sources of uncertainty is harvesting methods and costs; more specifically, the performance of contemporary machine methods is reviewed. We collected data from 25 literature references, describing 166 field trials. Three harvesting systems predominate: 127 used single pass cut-and-chip harvesters, 16 used double pass cut-and-store harvesters, 22 used the cut-and-bale harvester, and one study used a cut-and-billet harvester. Mean effective material capacity (EMC) was 30 Mg fresh weight h-1 (cut-and-chip technique), 19 Mg fresh weight h-1 (cut-and-store technique) and 14 Mg fresh weight h-1 (cut-and-bale technique). However, this comparison does not consider engine power, which varies with harvesting technique; cut-and-chip harvesters are by far the most powerful (>200 kW). When limiting harvesters to a maximum engine power of 200 kW, cut-and-chip harvesters achieved the lowest EMC (5 Mg fresh weight h-1), but they also perform a higher degree of material processing (cutting and chipping) than cut-and-store harvesters (only cutting) or than the cut-and-bale harvester (cutting and baling). The trend in commercial machinery is towards increased engine power for cut-and-chip and cut-and-store harvesters. No trends in EMC were documented for the recently developed cut-and-bale harvesting technique, which is presently produced in one version only. Field stocking (5-157 Mg fresh weight ha-1 in the reviewed studies) has a significant effect on harvester EMC. Lower field stocking can constrain the maximum EMC achieved by the machine given that harvesting speed can only be increased to a point. While the reviewed studies did not contain sufficient harvesting cost data for a thorough analysis, harvesting costs ranged between 6 and 99 EUR Mg-1 fresh weight.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.1016/j.rser.2017.02.059Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/137365Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Institutional Repository Universiteit AntwerpenArticle . 2017Data sources: Institutional Repository Universiteit AntwerpenUSC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.1016/j.rser.2017.02.059Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2017Full-Text: https://freidok.uni-freiburg.de/data/137365Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Institutional Repository Universiteit AntwerpenArticle . 2017Data sources: Institutional Repository Universiteit AntwerpenUSC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.02.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:National Inquiry Services Center (NISC) Authors: Ghaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; +2 AuthorsAcuna, M
Acuna, M in OpenAIREGhaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; Kuehmaier, M; Wiedemann, J;Acuna, M
Acuna, M in OpenAIREAustralia is at an early stage of exploring the use of forest biomass to generate energy. This study evaluated the biomass yield and the productivity rates of equipment for harvesting biomass in a poor-quality eucalypt plantation. The operation consisted of a tracked feller-buncher, grapple skidder and mobile chipper. Time study methods were used to measure the harvesting operation. A multiple regression model was constructed to predict skidding productivity. Biomass production was 63.9 t ha-1 based on the recorded load weight of eight trucks. Delays were documented and analysed. The average delay for all equipment was about 30% of working time. The study results will help guide biomass harvesting managers to estimate productivity and cost of similar operation sites.Keywords: biomass, chipper, eucalypt plantation, feller-buncher, productivity, skidderSouthern Forests 2011, 73(3&4): 149–154
Southern Forests a J... arrow_drop_down Southern Forests a Journal of Forest ScienceArticle . 2012 . Peer-reviewedData sources: African Journals Online (AJOL)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2989/20702620.2011.639491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Southern Forests a J... arrow_drop_down Southern Forests a Journal of Forest ScienceArticle . 2012 . Peer-reviewedData sources: African Journals Online (AJOL)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2989/20702620.2011.639491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:National Inquiry Services Center (NISC) Authors: Ghaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; +2 AuthorsAcuna, M
Acuna, M in OpenAIREGhaffariyan, M R; Brown, M W;Acuna, M;
Sessions, J; Kuehmaier, M; Wiedemann, J;Acuna, M
Acuna, M in OpenAIREAustralia is at an early stage of exploring the use of forest biomass to generate energy. This study evaluated the biomass yield and the productivity rates of equipment for harvesting biomass in a poor-quality eucalypt plantation. The operation consisted of a tracked feller-buncher, grapple skidder and mobile chipper. Time study methods were used to measure the harvesting operation. A multiple regression model was constructed to predict skidding productivity. Biomass production was 63.9 t ha-1 based on the recorded load weight of eight trucks. Delays were documented and analysed. The average delay for all equipment was about 30% of working time. The study results will help guide biomass harvesting managers to estimate productivity and cost of similar operation sites.Keywords: biomass, chipper, eucalypt plantation, feller-buncher, productivity, skidderSouthern Forests 2011, 73(3&4): 149–154
Southern Forests a J... arrow_drop_down Southern Forests a Journal of Forest ScienceArticle . 2012 . Peer-reviewedData sources: African Journals Online (AJOL)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2989/20702620.2011.639491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Southern Forests a J... arrow_drop_down Southern Forests a Journal of Forest ScienceArticle . 2012 . Peer-reviewedData sources: African Journals Online (AJOL)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2989/20702620.2011.639491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Authors: Luke Mirowski;Paul Turner;
Paul Turner
Paul Turner in OpenAIREMartin Strandgard;
Martin Strandgard; +1 AuthorsMartin Strandgard
Martin Strandgard in OpenAIRELuke Mirowski;Paul Turner;
Paul Turner
Paul Turner in OpenAIREMartin Strandgard;
Martin Strandgard;Martin Strandgard
Martin Strandgard in OpenAIREMauricio Acuna;
Mauricio Acuna
Mauricio Acuna in OpenAIREAbstract Forest biofuel delivered costs are generally uncompetitive with fossil fuels. Drying forest biofuel can potentially reduce delivered costs through weight reductions and net calorific value increases. The study examined the impact of roadside drying (RD) and use of high-volumetric capacity trucks on delivered costs of Pinus radiata pulp-logs and logging residue (LR) chips supplying a gasification plant. Five truck configurations: 6-axle semi-trailers; 9-axle B-doubles; proposed high-volumetric (HV) capacity versions of these trucks (HV semi-trailers and B-doubles); and 11-axle pocket road trains (PRT), were investigated across six supply areas using a forest biomass supply chain tool. Without RD all truck configurations were weight limited transporting logs, and all (except HV semi-trailers and B-doubles) were volume limited transporting LR chips. Post-RD all truck configurations were volume limited transporting logs or LR chips, (except HV B-doubles transporting logs). RD considerably reduced delivered costs: PRT (22%), B-doubles (24%), semi-trailers (25%) for logs and PRT (28%), B-doubles (29%), semi-trailers (30%) for LR chips. Delivered cost differences between truck configurations reflected transport cost differences. Without RD, truck trips transporting log were directly related to truck weight capacity. Additional volumetric capacity enabled HV semi-trailers and B-doubles to transport 6% and 4% more LR chips than standard versions, respectively, with equivalent truck trip reductions. RD weight reductions were: logs (33%); LR chips (53%), with consequent reductions in truck trips. PRTs required fewest truck trips to transport logs and LR chips without RD and the second fewest for logs post-RD due to their high weight and volumetric capacities.
Biomass and Bioenerg... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Authors: Luke Mirowski;Paul Turner;
Paul Turner
Paul Turner in OpenAIREMartin Strandgard;
Martin Strandgard; +1 AuthorsMartin Strandgard
Martin Strandgard in OpenAIRELuke Mirowski;Paul Turner;
Paul Turner
Paul Turner in OpenAIREMartin Strandgard;
Martin Strandgard;Martin Strandgard
Martin Strandgard in OpenAIREMauricio Acuna;
Mauricio Acuna
Mauricio Acuna in OpenAIREAbstract Forest biofuel delivered costs are generally uncompetitive with fossil fuels. Drying forest biofuel can potentially reduce delivered costs through weight reductions and net calorific value increases. The study examined the impact of roadside drying (RD) and use of high-volumetric capacity trucks on delivered costs of Pinus radiata pulp-logs and logging residue (LR) chips supplying a gasification plant. Five truck configurations: 6-axle semi-trailers; 9-axle B-doubles; proposed high-volumetric (HV) capacity versions of these trucks (HV semi-trailers and B-doubles); and 11-axle pocket road trains (PRT), were investigated across six supply areas using a forest biomass supply chain tool. Without RD all truck configurations were weight limited transporting logs, and all (except HV semi-trailers and B-doubles) were volume limited transporting LR chips. Post-RD all truck configurations were volume limited transporting logs or LR chips, (except HV B-doubles transporting logs). RD considerably reduced delivered costs: PRT (22%), B-doubles (24%), semi-trailers (25%) for logs and PRT (28%), B-doubles (29%), semi-trailers (30%) for LR chips. Delivered cost differences between truck configurations reflected transport cost differences. Without RD, truck trips transporting log were directly related to truck weight capacity. Additional volumetric capacity enabled HV semi-trailers and B-doubles to transport 6% and 4% more LR chips than standard versions, respectively, with equivalent truck trip reductions. RD weight reductions were: logs (33%); LR chips (53%), with consequent reductions in truck trips. PRTs required fewest truck trips to transport logs and LR chips without RD and the second fewest for logs post-RD due to their high weight and volumetric capacities.
Biomass and Bioenerg... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.106000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 AustraliaPublisher:MDPI AG Authors:Martin Strandgard;
Martin Strandgard
Martin Strandgard in OpenAIREMohammad Sadegh Taskhiri;
Mohammad Sadegh Taskhiri
Mohammad Sadegh Taskhiri in OpenAIREMauricio Acuna;
Mauricio Acuna
Mauricio Acuna in OpenAIREPaul Turner;
Paul Turner
Paul Turner in OpenAIREdoi: 10.3390/f12040455
handle: 11343/280424
Australia’s large potential forest bioenergy resource is considerably underutilised, due largely to its high delivered costs. Drying forest biomass at the roadside can potentially reduce its delivered cost through weight reduction and increased net calorific value. There has been little research on the impact of roadside drying for Australian conditions and plantation species. This study compared delivered costs for three forest biomass types—Eucalyptus globulus plantation whole trees and logging residue (LR)-disaggregated (LR conventional) or aggregated (LR fuel-adapted)—and three roadside storage scenarios—no storage, ≤two-month storage and optimal storage—to supply a hypothetical thermal power plant in south-west Western Australia. The study was performed using a tactical linear programming tool (MCPlan). Roadside storage reduced delivered costs, with optimal storage (storage for up to 14 months) producing the lowest costs. Delivered costs were inversely related to forest biomass spatial density due to transport cost reductions. Whole trees, which had the highest spatial density, stored under the optimal storage scenario had the lowest delivered costs (AUD 7.89/MWh) while LR conventional, with the lowest spatial density, had the highest delivered costs when delivered without storage (AUD 15.51/MWh). For both LR types, two-month storage achieved ~60% of the savings from the optimal storage scenario but only 23% of the savings for whole trees. The findings suggested that roadside drying and high forest biomass spatial density are critical to reducing forest biomass delivered costs.
Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/4/455/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/45103/Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/280424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12040455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/4/455/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/45103/Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/280424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12040455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 AustraliaPublisher:MDPI AG Authors:Martin Strandgard;
Martin Strandgard
Martin Strandgard in OpenAIREMohammad Sadegh Taskhiri;
Mohammad Sadegh Taskhiri
Mohammad Sadegh Taskhiri in OpenAIREMauricio Acuna;
Mauricio Acuna
Mauricio Acuna in OpenAIREPaul Turner;
Paul Turner
Paul Turner in OpenAIREdoi: 10.3390/f12040455
handle: 11343/280424
Australia’s large potential forest bioenergy resource is considerably underutilised, due largely to its high delivered costs. Drying forest biomass at the roadside can potentially reduce its delivered cost through weight reduction and increased net calorific value. There has been little research on the impact of roadside drying for Australian conditions and plantation species. This study compared delivered costs for three forest biomass types—Eucalyptus globulus plantation whole trees and logging residue (LR)-disaggregated (LR conventional) or aggregated (LR fuel-adapted)—and three roadside storage scenarios—no storage, ≤two-month storage and optimal storage—to supply a hypothetical thermal power plant in south-west Western Australia. The study was performed using a tactical linear programming tool (MCPlan). Roadside storage reduced delivered costs, with optimal storage (storage for up to 14 months) producing the lowest costs. Delivered costs were inversely related to forest biomass spatial density due to transport cost reductions. Whole trees, which had the highest spatial density, stored under the optimal storage scenario had the lowest delivered costs (AUD 7.89/MWh) while LR conventional, with the lowest spatial density, had the highest delivered costs when delivered without storage (AUD 15.51/MWh). For both LR types, two-month storage achieved ~60% of the savings from the optimal storage scenario but only 23% of the savings for whole trees. The findings suggested that roadside drying and high forest biomass spatial density are critical to reducing forest biomass delivered costs.
Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/4/455/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/45103/Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/280424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12040455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1999-4907/12/4/455/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/45103/Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/11343/280424Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f12040455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Abstract In Australia the use of forest biomass has been developing in recent years and initial efforts are built on adopting and trialling imported European technology. Using a linear programming-based tool, BIOPLAN, this study investigated the impact of five operational factors: energy demand, moisture mass fraction, interest rate, transport distance, and truck payload on total forest residues supply chain cost in Western Australia. The supply chain consisted four phases: extraction of residues from the clear felled area to roadside by forwarders, storage at roadside, chipping of materials by mobile chippers, and transport of chips to an energy plant. For an average monthly energy demand of 5 GWh, the minimum wood supply chain cost was about 29.4 $ t −1 , which is lower than the maximum target supply cost of 30–40 $ t −1 , reported by many industry stakeholders as the breakeven point for economically viable bioenergy production in Australia. The suggested volume available for chipping in the second year was larger than in the first year indicating that the optimisation model proposed storing more materials in the first year to be chipped in the second year. The sensitivity analysis showed no strong correlation between energy demand and supply chain cost per m 3 . For higher interest rates, the total storage cost increased which resulted in larger operational cost per m 3 . Longer transport distances and lower truck payloads resulted in higher transport cost per unit of delivered chips. In addition, the highest supply chain costs occurred when moisture mass fraction ranged between 20% and 30%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Elsevier BV Abstract In Australia the use of forest biomass has been developing in recent years and initial efforts are built on adopting and trialling imported European technology. Using a linear programming-based tool, BIOPLAN, this study investigated the impact of five operational factors: energy demand, moisture mass fraction, interest rate, transport distance, and truck payload on total forest residues supply chain cost in Western Australia. The supply chain consisted four phases: extraction of residues from the clear felled area to roadside by forwarders, storage at roadside, chipping of materials by mobile chippers, and transport of chips to an energy plant. For an average monthly energy demand of 5 GWh, the minimum wood supply chain cost was about 29.4 $ t −1 , which is lower than the maximum target supply cost of 30–40 $ t −1 , reported by many industry stakeholders as the breakeven point for economically viable bioenergy production in Australia. The suggested volume available for chipping in the second year was larger than in the first year indicating that the optimisation model proposed storing more materials in the first year to be chipped in the second year. The sensitivity analysis showed no strong correlation between energy demand and supply chain cost per m 3 . For higher interest rates, the total storage cost increased which resulted in larger operational cost per m 3 . Longer transport distances and lower truck payloads resulted in higher transport cost per unit of delivered chips. In addition, the highest supply chain costs occurred when moisture mass fraction ranged between 20% and 30%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2013.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Ireland, AustraliaPublisher:Elsevier BV Publicly fundedAuthors: Amanda Sosa;Mauricio Acuna;
Mauricio Acuna
Mauricio Acuna in OpenAIREKevin McDonnell;
Kevin McDonnell
Kevin McDonnell in OpenAIREGer Devlin;
Ger Devlin
Ger Devlin in OpenAIREhandle: 10197/7007
The aim of this study was to analyse the supply of wood biomass (short wood) to the three peat power plants in Ireland and the impacts on the competing wood-based panel industries. The methodology includes the development of a spatial decision support tool based on LP (Linear Programming). It uses drying curves to assess the moisture content, weight and energy content of biomass during a two year period planning. Harvesting, chipping, storage and transportation costs are calculated based on the biomass moisture content. The model optimally allocates woodchips and logs from thinnings and clearfells. Results show that the planned maximum 30% co-firing rate at the three peat power station could be met with the forecasted short wood availability from both the private and public sector. The costs of supply increased not only with higher demands, but also with tighter constraints on the MC demanded by power plants. Spatial distribution and operational factors such as efficiency in transportation and truck loading showed to be sensitive to changes in MC. The analysis shows the benefits of managing the MC when optimising supply chains in order to deliver biomass to energy plants in a cost-effective manner.
Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Ireland, AustraliaPublisher:Elsevier BV Publicly fundedAuthors: Amanda Sosa;Mauricio Acuna;
Mauricio Acuna
Mauricio Acuna in OpenAIREKevin McDonnell;
Kevin McDonnell
Kevin McDonnell in OpenAIREGer Devlin;
Ger Devlin
Ger Devlin in OpenAIREhandle: 10197/7007
The aim of this study was to analyse the supply of wood biomass (short wood) to the three peat power plants in Ireland and the impacts on the competing wood-based panel industries. The methodology includes the development of a spatial decision support tool based on LP (Linear Programming). It uses drying curves to assess the moisture content, weight and energy content of biomass during a two year period planning. Harvesting, chipping, storage and transportation costs are calculated based on the biomass moisture content. The model optimally allocates woodchips and logs from thinnings and clearfells. Results show that the planned maximum 30% co-firing rate at the three peat power station could be met with the forecasted short wood availability from both the private and public sector. The costs of supply increased not only with higher demands, but also with tighter constraints on the MC demanded by power plants. Spatial distribution and operational factors such as efficiency in transportation and truck loading showed to be sensitive to changes in MC. The analysis shows the benefits of managing the MC when optimising supply chains in order to deliver biomass to energy plants in a cost-effective manner.
Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down USC Research Bank research dataArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University College Dublin: Research Repository UCDArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.04.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu