- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Shih-Hsi Liu; Marjan Mernik; Matej Črepinšek; Dervis Karaboga;Artificial Bee Colony (ABC) is a Swarm Intelligence algorithm that has obtained meta-heuristic researchers' attention and favor over recent years. It comprises good balance between exploitation (employed bee phase and onlooker bee phase) and exploration (scout bee phase). As nowadays, more researchers are using ABC and its variants as a control group to perform comparisons, it is crucial that comparisons with other algorithms are fair. This paper points to some misapprehensions when comparing meta-heuristic algorithms based on iterations (generations or cycles) with special emphasis on ABC. We hope that through our findings this paper can be treated as a beacon to remind researchers to learn from these mistakes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ins.2014.08.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 212 citations 212 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ins.2014.08.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Authors: Bahriye Basturk; Dervis Karaboga;Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees' swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.
Journal of Global Op... arrow_drop_down Journal of Global OptimizationArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10898-007-9149-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6K citations 6,080 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert Journal of Global Op... arrow_drop_down Journal of Global OptimizationArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10898-007-9149-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2008Publisher:Elsevier BV Authors: Bahriye Basturk; Dervis Karaboga;Artificial bee colony (ABC) algorithm is an optimization algorithm based on a particular intelligent behaviour of honeybee swarms. This work compares the performance of ABC algorithm with that of differential evolution (DE), particle swarm optimization (PSO) and evolutionary algorithm (EA) for multi-dimensional numeric problems. The simulation results show that the performance of ABC algorithm is comparable to those of the mentioned algorithms and can be efficiently employed to solve engineering problems with high dimensionality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2007.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 3,039 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2007.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Bahriye Akay; Dervis Karaboga;Artificial Bee Colony (ABC) algorithm is one of the most recently introduced swarm-based algorithms. ABC simulates the intelligent foraging behaviour of a honeybee swarm. In this work, ABC is used for optimizing a large set of numerical test functions and the results produced by ABC algorithm are compared with the results obtained by genetic algorithm, particle swarm optimization algorithm, differential evolution algorithm and evolution strategies. Results show that the performance of the ABC is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters.
Applied Mathematics ... arrow_drop_down Applied Mathematics and ComputationArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.amc.2009.03.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3K citations 2,555 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert Applied Mathematics ... arrow_drop_down Applied Mathematics and ComputationArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.amc.2009.03.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Nurhan Karaboga; Beyza Gorkemli; Celal Ozturk; Dervis Karaboga;Swarm intelligence (SI) is briefly defined as the collective behaviour of decentralized and self-organized swarms. The well known examples for these swarms are bird flocks, fish schools and the colony of social insects such as termites, ants and bees. In 1990s, especially two approaches based on ant colony and on fish schooling/bird flocking introduced have highly attracted the interest of researchers. Although the self-organization features are required by SI are strongly and clearly seen in honey bee colonies, unfortunately the researchers have recently started to be interested in the behaviour of these swarm systems to describe new intelligent approaches, especially from the beginning of 2000s. During a decade, several algorithms have been developed depending on different intelligent behaviours of honey bee swarms. Among those, artificial bee colony (ABC) is the one which has been most widely studied on and applied to solve the real world problems, so far. Day by day the number of researchers being interested in ABC algorithm increases rapidly. This work presents a comprehensive survey of the advances with ABC and its applications. It is hoped that this survey would be very beneficial for the researchers studying on SI, particularly ABC algorithm.
Artificial Intellige... arrow_drop_down Artificial Intelligence ReviewArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10462-012-9328-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2K citations 1,599 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Artificial Intellige... arrow_drop_down Artificial Intelligence ReviewArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10462-012-9328-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Shih-Hsi Liu; Marjan Mernik; Matej Črepinšek; Dervis Karaboga;Artificial Bee Colony (ABC) is a Swarm Intelligence algorithm that has obtained meta-heuristic researchers' attention and favor over recent years. It comprises good balance between exploitation (employed bee phase and onlooker bee phase) and exploration (scout bee phase). As nowadays, more researchers are using ABC and its variants as a control group to perform comparisons, it is crucial that comparisons with other algorithms are fair. This paper points to some misapprehensions when comparing meta-heuristic algorithms based on iterations (generations or cycles) with special emphasis on ABC. We hope that through our findings this paper can be treated as a beacon to remind researchers to learn from these mistakes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ins.2014.08.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 212 citations 212 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ins.2014.08.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Authors: Bahriye Basturk; Dervis Karaboga;Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees' swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.
Journal of Global Op... arrow_drop_down Journal of Global OptimizationArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10898-007-9149-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6K citations 6,080 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert Journal of Global Op... arrow_drop_down Journal of Global OptimizationArticle . 2007 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10898-007-9149-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2008Publisher:Elsevier BV Authors: Bahriye Basturk; Dervis Karaboga;Artificial bee colony (ABC) algorithm is an optimization algorithm based on a particular intelligent behaviour of honeybee swarms. This work compares the performance of ABC algorithm with that of differential evolution (DE), particle swarm optimization (PSO) and evolutionary algorithm (EA) for multi-dimensional numeric problems. The simulation results show that the performance of ABC algorithm is comparable to those of the mentioned algorithms and can be efficiently employed to solve engineering problems with high dimensionality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2007.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3K citations 3,039 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2007.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Bahriye Akay; Dervis Karaboga;Artificial Bee Colony (ABC) algorithm is one of the most recently introduced swarm-based algorithms. ABC simulates the intelligent foraging behaviour of a honeybee swarm. In this work, ABC is used for optimizing a large set of numerical test functions and the results produced by ABC algorithm are compared with the results obtained by genetic algorithm, particle swarm optimization algorithm, differential evolution algorithm and evolution strategies. Results show that the performance of the ABC is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters.
Applied Mathematics ... arrow_drop_down Applied Mathematics and ComputationArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.amc.2009.03.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3K citations 2,555 popularity Top 0.01% influence Top 0.01% impulse Top 0.1% Powered by BIP!
more_vert Applied Mathematics ... arrow_drop_down Applied Mathematics and ComputationArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.amc.2009.03.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Nurhan Karaboga; Beyza Gorkemli; Celal Ozturk; Dervis Karaboga;Swarm intelligence (SI) is briefly defined as the collective behaviour of decentralized and self-organized swarms. The well known examples for these swarms are bird flocks, fish schools and the colony of social insects such as termites, ants and bees. In 1990s, especially two approaches based on ant colony and on fish schooling/bird flocking introduced have highly attracted the interest of researchers. Although the self-organization features are required by SI are strongly and clearly seen in honey bee colonies, unfortunately the researchers have recently started to be interested in the behaviour of these swarm systems to describe new intelligent approaches, especially from the beginning of 2000s. During a decade, several algorithms have been developed depending on different intelligent behaviours of honey bee swarms. Among those, artificial bee colony (ABC) is the one which has been most widely studied on and applied to solve the real world problems, so far. Day by day the number of researchers being interested in ABC algorithm increases rapidly. This work presents a comprehensive survey of the advances with ABC and its applications. It is hoped that this survey would be very beneficial for the researchers studying on SI, particularly ABC algorithm.
Artificial Intellige... arrow_drop_down Artificial Intelligence ReviewArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10462-012-9328-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2K citations 1,599 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Artificial Intellige... arrow_drop_down Artificial Intelligence ReviewArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10462-012-9328-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu