- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, AustraliaPublisher:Springer Science and Business Media LLC Reniel B. Cabral; Benjamin S. Halpern; Sarah E. Lester; Crow White; Steven D. Gaines; Christopher Costello;AbstractFood security remains a principal challenge in the developing tropics where communities rely heavily on marine-based protein. While some improvements in fisheries management have been made in these regions, a large fraction of coastal fisheries remain unmanaged, mismanaged, or use only crude input controls. These quasi-open-access conditions often lead to severe overfishing, depleted stocks, and compromised food security. A possible fishery management approach in these institution-poor settings is to implement fully protected marine protected areas (MPAs). Although the primary push for MPAs has been to solve the conservation problems that arise from mismanagement, MPAs can also benefit fisheries beyond their borders. The literature has not completely characterized how to design MPAs under diverse ecological and economic conditions when food security is the objective. We integrated four key biological and economic variables (i.e., fish population growth rate, fish mobility, fish price, and fishing cost) as well as an important aspect of reserve design (MPA size) into a general model and determined their combined influence on food security when MPAs are implemented in an open-access setting. We explicitly modeled open-access conditions that account for the behavioral response of fishers to the MPA; this approach is distinct from much of the literature that focuses on assumptions of “scorched earth” (i.e., severe over-fishing), optimized management, or an arbitrarily defined fishing mortality outside the MPA’s boundaries. We found that the MPA size that optimizes catch depends strongly on economic variables. Large MPAs optimize catch for species heavily harvested for their high value and/or low harvesting cost, while small MPAs or no closure are best for species lightly harvested for their low value and high harvesting cost. Contrary to previous theoretical expectations, both high and low mobility species are expected to experience conservation benefits from protection, although, as shown previously, greater conservation benefits are expected for low mobility species. Food security benefits from MPAs can be obtained from species of any mobility. Results deliver both qualitative insights and quantitative guidance for designing MPAs for food security in open-access fisheries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/8sv9k5rvData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1038/s41598-019-44406-wData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-44406-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/8sv9k5rvData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1038/s41598-019-44406-wData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-44406-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Sarah E. Lester; Jennifer McHenry; Heather Welch; Heather Welch; Vincent S. Saba;doi: 10.1111/gcb.14828
pmid: 31487434
AbstractClimate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, Australia, SpainPublisher:The Royal Society Funded by:EC | CLOCKEC| CLOCKKatherine J. Siegel; Reniel B. Cabral; Jennifer McHenry; Elena Ojea; Brandon Owashi; Sarah E. Lester;Coral reef social-ecological systems worldwide face major impacts from climate change, and spatial variation in vulnerability is driven by differential exposure to climatic threats, ecological and socio-economic sensitivity to those threats, ecological recovery potential, and socio-economic adaptive capacity. We assess variation in social-ecological vulnerability to climate change-induced coral bleaching, specifically for reef-based fisheries and tourism, of islands throughout the insular Caribbean, thus providing the first region-wide quantitative analysis of island-scale social-ecological vulnerability to coral bleaching. We show that different components of vulnerability have distinct spatial patterns and that variability in overall vulnerability is driven more by socio-economic than ecological components. Importantly, we find that sovereign islands are less vulnerable on average than overseas territories and that the presence of fisheries management regulations is a significant predictor of adaptive capacity and socio-economic sensitivity, with important implications for island-level governance and policies to reduce climate vulnerability.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1098/rspb.2018.2365Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1098/rspb.2018.2365Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Sarah E. Lester;pmid: 37264197
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02034-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02034-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Denmark, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | National Socio-Environmen...NSF| National Socio-Environmental Synthesis CenterDavid A. Gill; Sarah E. Lester; Christopher M. Free; Alexander Pfaff; Edwin Iversen; Brian J. Reich; Shu Yang; Gabby Ahmadia; Dominic A. Andradi-Brown; Emily S. Darling; Graham J. Edgar; Helen E. Fox; Jonas Geldmann; Duong Trung Le; Michael B. Mascia; Roosevelt Mesa-Gutiérrez; Peter J. Mumby; Laura Veverka; Laura M. Warmuth;pmid: 38408235
pmc: PMC10927568
Marine protected areas (MPAs) are widely used for ocean conservation, yet the relative impacts of various types of MPAs are poorly understood. We estimated impacts on fish biomass from no-take and multiple-use (fished) MPAs, employing a rigorous matched counterfactual design with a global dataset of >14,000 surveys in and around 216 MPAs. Both no-take and multiple-use MPAs generated positive conservation outcomes relative to no protection (58.2% and 12.6% fish biomass increases, respectively), with smaller estimated differences between the two MPA types when controlling for additional confounding factors (8.3% increase). Relative performance depended on context and management: no-take MPAs performed better in areas of high human pressure but similar to multiple-use in remote locations. Multiple-use MPA performance was low in high-pressure areas but improved significantly with better management, producing similar outcomes to no-take MPAs when adequately staffed and appropriate use regulations were applied. For priority conservation areas where no-take restrictions are not possible or ethical, our findings show that a portfolio of well-designed and well-managed multiple-use MPAs represents a viable and potentially equitable pathway to advance local and global conservation.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/67j491pbData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2313205121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/67j491pbData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2313205121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2019Publisher:The Royal Society Funded by:EC | CLOCKEC| CLOCKSiegel, Katherine J.; Reniel B. Cabral; McHenry, Jennifer; Ojea, Elena; Owashi, Brandon; Lester, Sarah E.;Detailed descriptions of data and analyses used to assess social-ecological vulnerability
figshare arrow_drop_down http://dx.doi.org/10.6084/m9.f...Other literature type . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7667198.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down http://dx.doi.org/10.6084/m9.f...Other literature type . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7667198.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, AustraliaPublisher:Springer Science and Business Media LLC Reniel B. Cabral; Benjamin S. Halpern; Sarah E. Lester; Crow White; Steven D. Gaines; Christopher Costello;AbstractFood security remains a principal challenge in the developing tropics where communities rely heavily on marine-based protein. While some improvements in fisheries management have been made in these regions, a large fraction of coastal fisheries remain unmanaged, mismanaged, or use only crude input controls. These quasi-open-access conditions often lead to severe overfishing, depleted stocks, and compromised food security. A possible fishery management approach in these institution-poor settings is to implement fully protected marine protected areas (MPAs). Although the primary push for MPAs has been to solve the conservation problems that arise from mismanagement, MPAs can also benefit fisheries beyond their borders. The literature has not completely characterized how to design MPAs under diverse ecological and economic conditions when food security is the objective. We integrated four key biological and economic variables (i.e., fish population growth rate, fish mobility, fish price, and fishing cost) as well as an important aspect of reserve design (MPA size) into a general model and determined their combined influence on food security when MPAs are implemented in an open-access setting. We explicitly modeled open-access conditions that account for the behavioral response of fishers to the MPA; this approach is distinct from much of the literature that focuses on assumptions of “scorched earth” (i.e., severe over-fishing), optimized management, or an arbitrarily defined fishing mortality outside the MPA’s boundaries. We found that the MPA size that optimizes catch depends strongly on economic variables. Large MPAs optimize catch for species heavily harvested for their high value and/or low harvesting cost, while small MPAs or no closure are best for species lightly harvested for their low value and high harvesting cost. Contrary to previous theoretical expectations, both high and low mobility species are expected to experience conservation benefits from protection, although, as shown previously, greater conservation benefits are expected for low mobility species. Food security benefits from MPAs can be obtained from species of any mobility. Results deliver both qualitative insights and quantitative guidance for designing MPAs for food security in open-access fisheries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/8sv9k5rvData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1038/s41598-019-44406-wData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-44406-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/8sv9k5rvData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1038/s41598-019-44406-wData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-44406-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Sarah E. Lester; Jennifer McHenry; Heather Welch; Heather Welch; Vincent S. Saba;doi: 10.1111/gcb.14828
pmid: 31487434
AbstractClimate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, Australia, SpainPublisher:The Royal Society Funded by:EC | CLOCKEC| CLOCKKatherine J. Siegel; Reniel B. Cabral; Jennifer McHenry; Elena Ojea; Brandon Owashi; Sarah E. Lester;Coral reef social-ecological systems worldwide face major impacts from climate change, and spatial variation in vulnerability is driven by differential exposure to climatic threats, ecological and socio-economic sensitivity to those threats, ecological recovery potential, and socio-economic adaptive capacity. We assess variation in social-ecological vulnerability to climate change-induced coral bleaching, specifically for reef-based fisheries and tourism, of islands throughout the insular Caribbean, thus providing the first region-wide quantitative analysis of island-scale social-ecological vulnerability to coral bleaching. We show that different components of vulnerability have distinct spatial patterns and that variability in overall vulnerability is driven more by socio-economic than ecological components. Importantly, we find that sovereign islands are less vulnerable on average than overseas territories and that the presence of fisheries management regulations is a significant predictor of adaptive capacity and socio-economic sensitivity, with important implications for island-level governance and policies to reduce climate vulnerability.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1098/rspb.2018.2365Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.1098/rspb.2018.2365Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2018.2365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Sarah E. Lester;pmid: 37264197
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02034-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02034-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Denmark, United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | National Socio-Environmen...NSF| National Socio-Environmental Synthesis CenterDavid A. Gill; Sarah E. Lester; Christopher M. Free; Alexander Pfaff; Edwin Iversen; Brian J. Reich; Shu Yang; Gabby Ahmadia; Dominic A. Andradi-Brown; Emily S. Darling; Graham J. Edgar; Helen E. Fox; Jonas Geldmann; Duong Trung Le; Michael B. Mascia; Roosevelt Mesa-Gutiérrez; Peter J. Mumby; Laura Veverka; Laura M. Warmuth;pmid: 38408235
pmc: PMC10927568
Marine protected areas (MPAs) are widely used for ocean conservation, yet the relative impacts of various types of MPAs are poorly understood. We estimated impacts on fish biomass from no-take and multiple-use (fished) MPAs, employing a rigorous matched counterfactual design with a global dataset of >14,000 surveys in and around 216 MPAs. Both no-take and multiple-use MPAs generated positive conservation outcomes relative to no protection (58.2% and 12.6% fish biomass increases, respectively), with smaller estimated differences between the two MPA types when controlling for additional confounding factors (8.3% increase). Relative performance depended on context and management: no-take MPAs performed better in areas of high human pressure but similar to multiple-use in remote locations. Multiple-use MPA performance was low in high-pressure areas but improved significantly with better management, producing similar outcomes to no-take MPAs when adequately staffed and appropriate use regulations were applied. For priority conservation areas where no-take restrictions are not possible or ethical, our findings show that a portfolio of well-designed and well-managed multiple-use MPAs represents a viable and potentially equitable pathway to advance local and global conservation.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/67j491pbData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2313205121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024Full-Text: https://escholarship.org/uc/item/67j491pbData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of CaliforniaUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2313205121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2019Publisher:The Royal Society Funded by:EC | CLOCKEC| CLOCKSiegel, Katherine J.; Reniel B. Cabral; McHenry, Jennifer; Ojea, Elena; Owashi, Brandon; Lester, Sarah E.;Detailed descriptions of data and analyses used to assess social-ecological vulnerability
figshare arrow_drop_down http://dx.doi.org/10.6084/m9.f...Other literature type . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7667198.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down http://dx.doi.org/10.6084/m9.f...Other literature type . 2019Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7667198.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu