- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, ItalyPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research: L...NSF| Collaborative Research: LiT: ETBC: Plant-microbe feedback mechanisms affecting decomposition and nutrient availability and interactions with climate changeLeCain, Daniel R.; Smith, David C.; Morgan, Jack A.; Kimball, Bruce A.; Pendall, Elise (R17757); Miglietta, Franco;In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms(-1) average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.
PLoS ONE arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, United Kingdom, United Kingdom, United KingdomPublisher:Wiley Smith, Andrew R.; Lukac, Martin; Hood, Robin; Healey, John R.; Miglietta, Franco; Godbold, Douglas L.;Summary In a free‐air carbon dioxide (CO2) enrichment study (BangorFACE), Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one‐, two‐ and three‐species mixtures (n = 4). The trees were exposed to ambient or elevated CO2 (580 μmol mol−1) for 4 yr, and aboveground growth characteristics were measured. In monoculture, the mean effect of CO2 enrichment on aboveground woody biomass was + 29, + 22 and + 16% for A. glutinosa, F. sylvatica and B. pendula, respectively. When the same species were grown in polyculture, the response to CO2 switched to + 10, + 7 and 0% for A. glutinosa, B. pendula and F. sylvatica, respectively. In ambient atmosphere, our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 to 18.9 ± 1.0 kg m−2, whereas, in an elevated CO2 atmosphere, aboveground woody biomass increased from 15.2 ± 0.6 to 20.2 ± 0.6 kg m−2. The overyielding effect of polyculture was smaller (+ 7%) in elevated CO2 than in an ambient atmosphere (+ 18%). Our results show that the aboveground response to elevated CO2 is affected significantly by intra‐ and interspecific competition, and that the elevated CO2 response may be reduced in forest communities comprising tree species with contrasting functional traits.
NERC Open Research A... arrow_drop_down Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingNew PhytologistArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingNew PhytologistArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, ItalyPublisher:Wiley Franco Miglietta; Martin Lukac; Douglas L. Godbold; Andrew R. Smith; Andrew R. Smith; Michael Bambrick;AbstractAs a consequence of land‐use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2. However, natural forests are often intimate mixtures of a number of co‐occurring species. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free‐air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol−1) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change.
Archivio istituziona... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 Belgium, ItalyPublisher:IEEE Chan, Cheung Wai; Dalponte, Michele; Ene, L. T.; Frizzera, Lorenzo; Miglietta, Franco; Gianelle, Damiano;Remote sensing can be considered a key instrument for studies related to forests and their dynamics. At present, the increasing availability of multisensor acquisitions over the same areas offers the possibility to combine data from different sensors. In this study high resolution airborne hyperspectral and ALS data at 0.4m resolution were acquired during summer 2012 in a complex forest ecosystem in the Alps, characterized by different tree species and difficult morphology. Using tree crown polygons from ALS and classification map from hyperspectral images, a species-specific tree canopy map was obtained. Then, height distribution of dominant tree species in three habitat strata were analyzed. Our initial experiments show the potential of the mix-sensors approach for further forest biophysical parameters estimation which is a vital part of forest inventory.
Archivio istituziona... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2013Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/whispers.2013.8080662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2013Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/whispers.2013.8080662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 Italy, France, France, Netherlands, United Kingdom, Australia, France, Netherlands, BelgiumPublisher:Wiley Authors: Ainsworth, Elizabeth A.; Beier, Claus; Calfapietra, Carlo; Ceulemans, Reinhart; +28 AuthorsAinsworth, Elizabeth A.; Beier, Claus; Calfapietra, Carlo; Ceulemans, Reinhart; Durand Tardif, Marie-Hélène; Farquhar, Graham D; Godbold, Douglas L.; Hendrey, George R.; Hickler, Thomas; Kaduk, Joerg; Karnosky, David F.; Kimball, Bruce A.; Koerner, Christian; Koornneef, Maarten; Lafarge, Tanguy; Leakey, Andrew D. B.; Lewin, Keith F.; Long, Stephen P.; Manderscheid, Remy; Mcneil, David L.; Mies, Timothy A.; Miglietta, Franco; Morgan, Jack A; Nagy, John; Norby, Richard J; Norton, Robert M.; Percy, Kevin E.; Rogers, Alistair; Soussana, Jean-François; Stitt, Mark; Weigel, Hans-Joachim; White, Jeffrey W.;pmid: 18518914
handle: 20.500.14243/7541 , 10067/716000151162165141 , 2381/8977 , 1885/61006
ABSTRACTA rising global population and demand for protein‐rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO2] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO2] provides a unique opportunity to increase the productivity of C3 crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO2 responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO2 enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO2]. We propose a new generation of large‐scale, low‐cost per unit area FACE experiments to identify the most CO2‐responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61006Data sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPlant Cell & EnvironmentArticle . 2008Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 144 citations 144 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61006Data sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPlant Cell & EnvironmentArticle . 2008Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Research , Review 2015Embargo end date: 01 Jan 2015 France, France, France, United Kingdom, Switzerland, France, France, Belgium, Denmark, France, GermanyPublisher:Wiley Funded by:FWF | Climate extremes and gras..., EC | CARBO-EXTREME, SNSF | Assessing the spatiotempo... +2 projectsFWF| Climate extremes and grassland carbon dynamics ,EC| CARBO-EXTREME ,SNSF| Assessing the spatiotemporal dynamics of the North American Monsoon System using tree-ring stable isotope and vegetation model parameters ,ANR| OTMed ,ANR| AmidexMichael Bahn; Dorothe A. Frank; Franco Miglietta; Marijn van der Velde; Wolfgang Cramer; Sonia I. Seneviratne; Ariane Walz; Pete Smith; Markus Reichstein; Christian Beer; Christian Beer; Philippe Ciais; Sara Vicca; Ben Poulter; Andreas Ibrom; Jakob Zscheischler; Miguel A. Zavala; Nina Buchmann; Flurin Babst; Flurin Babst; David Frank; Martin Wattenbach; Anja Rammig; Anja Rammig; Kirsten Thonicke; Josep G. Canadell; Miguel D. Mahecha;AbstractExtreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance‐induced mechanisms and processes to also operate in an extreme context. The paucity of well‐defined studies currently renders a quantitative meta‐analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land‐cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground‐based observational case studies reveals that many regions in the (sub‐)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublikationsserver der Universität PotsdamReview . 2015Data sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12916&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu766 citations 766 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublikationsserver der Universität PotsdamReview . 2015Data sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12916&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | EARLYHUMANIMPACT, EC | TREES4FUTUREEC| EARLYHUMANIMPACT ,EC| TREES4FUTURECarlo Barbante; Federico Carotenuto; Franco Miglietta; Claudio Donati; Tobias Weil; Jacopo Gabrieli; Carlotta De Filippo; Carlotta De Filippo; Massimo Pindo; Massimiliano Pasqui; Luisa Poto; Davide Albanese; Duccio Cavalieri; Duccio Cavalieri; Lorenzo Pavarini; Birgit Sattler;A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust.Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt.Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.
Archivio istituziona... arrow_drop_down Flore (Florence Research Repository)Article . 2017Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/38356Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-017-0249-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 8 Powered bymore_vert Archivio istituziona... arrow_drop_down Flore (Florence Research Repository)Article . 2017Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/38356Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-017-0249-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2010Publisher:OpenAlex Chuixiang Yi; D. M. Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; Luís Aires; J. D. Albertson; Christof Ammann; M. Altaf Arain; Alessandro Araújo; Marc Aubinet; Mika Aurela; Zoltán Barcza; Alan G. Barr; Paul Berbigier; Jason Beringer; Christian Bernhofer; Andrew Black; Paul V. Bolstad; Fred C. Bosveld; M. S. J. Broadmeadow; Nina Buchmann; Sean P. Burns; Pierre Cellier; Jingming Chen; Jiquan Chen; Philippe Ciais; Robert Clement; Bruce D. Cook; Peter S. Curtis; D. B. Dail; Ebba Dellwik; Nicolas Delpierre; Ankur R. Desai; Sabina Dore; D. Dragoni; Bert G. Drake; Éric Dufrêne; Allison L. Dunn; J.A. Elbers; Werner Eugster; Matthias Falk; Christian Feigenwinter; Lawrence B. Flanagan; Thomas Foken; J. M. Frank; J. Fuhrer; Damiano Gianelle; Allen H. Goldstein; Mike Goulden; André Granier; T. Gruenwald; Lianhong Gu; Haiqiang Guo; Albin Hammerle; Shijie Han; Niall P. Hanan; László Haszpra; Bernard Heinesch; Carole Helfter; Dimmie Hendriks; Lindsay B. Hutley; Andreas Ibrom; C. Jacobs; Torbjoern Johansson; Marjan Jongen; Gabriel G. Katul; Gerard Kiely; Katja Klumpp; Alexander Knohl; Thomas E. Kolb; Werner L. Kutsch; Peter M. Lafleur; Tuomas Laurila; R. Leuning; Anders Lindroth; Heping Li; Benjamin Loubet; Giovanni Manca; Michal V. Marek; Hank A. Margolis; Timothy A. Martin; W. J. Massman; Roser Matamala; Giorgio Matteucci; Harry McCaughey; Lutz Merbold; Tilden Meyers; Mirco Migliavacca; Franco Miglietta; Laurent Misson; Meelis Moelder; John Moncrieff; Russell K. Monson; Leonardo Montagnani; M. Montes-Helu; Eddy Moors; Christine Moureaux; M. M. Mukelabai;Comprendre les relations entre le climat et l'échange de carbone par les écosystèmes terrestres est essentiel pour prédire les niveaux futurs de dioxyde de carbone atmosphérique en raison des effets d'accélération potentiels des rétroactions positives du cycle climat-carbone. Cependant, les relations directement observées entre le climat et l'échange de CO2 terrestre avec l'atmosphère à travers les biomes et les continents font défaut. Nous présentons ici des données décrivant les relations entre l'échange net de carbone par les écosystèmes (NEE) et les facteurs climatiques tels que mesurés à l'aide de la méthode de covariance de Foucault sur 125 sites uniques dans divers écosystèmes sur six continents avec un total de 559 années de site. Nous trouvons que le NEE observé aux sites de covariance tourbillonnaire est (1) une fonction forte de la température annuelle moyenne aux latitudes moyennes et élevées, (2) une fonction forte de la sécheresse aux latitudes moyennes et basses, et (3) une fonction à la fois de la température et de la sécheresse autour de la ceinture moyenne-latitudinale (45°N). La sensibilité du NEE à la température annuelle moyenne se décompose à ~ 16 °C (une valeur seuil de la température annuelle moyenne), au-delà de laquelle aucune augmentation supplémentaire de l'absorption de CO2 avec la température n'a été observée et la sécheresse influence les règles de dépassement de l'influence de la température. Comprender las relaciones entre el clima y el intercambio de carbono por parte de los ecosistemas terrestres es fundamental para predecir los niveles futuros de dióxido de carbono en la atmósfera debido a los posibles efectos aceleradores de las retroalimentaciones positivas del ciclo clima-carbono. Sin embargo, faltan relaciones directamente observadas entre el clima y el intercambio terrestre de CO2 con la atmósfera a través de biomas y continentes. Aquí presentamos datos que describen las relaciones entre el intercambio neto de carbono (NEE) del ecosistema y los factores climáticos medidos utilizando el método de covarianza de remolinos en 125 sitios únicos en varios ecosistemas de seis continentes con un total de 559 años-sitio. Encontramos que la NEE observada en los sitios de covarianza de remolinos es (1) una fuerte función de la temperatura media anual en latitudes medias y altas, (2) una fuerte función de sequedad en latitudes medias y bajas, y (3) una función tanto de la temperatura como de la sequedad alrededor del cinturón latitudinal medio (45°N). La sensibilidad de NEE a la temperatura media anual se rompe a ~ 16 °C (un valor umbral de la temperatura media anual), por encima del cual no se observó ningún aumento adicional de la absorción de CO2 con la temperatura y la influencia de la sequedad anula la influencia de la temperatura. Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45°N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 °C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence. يعد فهم العلاقات بين المناخ وتبادل الكربون بواسطة النظم الإيكولوجية الأرضية أمرًا بالغ الأهمية للتنبؤ بالمستويات المستقبلية لثاني أكسيد الكربون في الغلاف الجوي بسبب التأثيرات المتسارعة المحتملة للتغذية المرتدة الإيجابية لدورة المناخ والكربون. ومع ذلك، لا توجد علاقات ملحوظة مباشرة بين المناخ والتبادل الأرضي لثاني أكسيد الكربون مع الغلاف الجوي عبر المناطق الحيوية والقارات. نقدم هنا بيانات تصف العلاقات بين صافي تبادل النظام البيئي للكربون (NEE) والعوامل المناخية كما تم قياسها باستخدام طريقة التباين الدوامي في 125 موقعًا فريدًا في أنظمة بيئية مختلفة عبر ست قارات بإجمالي 559 سنة موقع. نجد أن NEE التي لوحظت في مواقع التباين الدوامي هي (1) وظيفة قوية لمتوسط درجة الحرارة السنوية عند خطوط العرض المتوسطة والعالية، (2) وظيفة قوية للجفاف عند خطوط العرض المتوسطة والمنخفضة، و (3) وظيفة لكل من درجة الحرارة والجفاف حول حزام العرض المتوسط (45درجةشمالاً). تنهار حساسية NEE لمتوسط درجة الحرارة السنوية عند حوالي 16 درجة مئوية (قيمة عتبة لمتوسط درجة الحرارة السنوية)، والتي لم يلاحظ فوقها أي زيادة أخرى في امتصاص ثاني أكسيد الكربون مع درجة الحرارة ويتجاوز تأثير الجفاف تأثير درجة الحرارة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j5vy4-fwn92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j5vy4-fwn92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Germany, ItalyPublisher:IOP Publishing Tudoroiu M; Genesio L; Gioli B; Schume H; Knohl A; Brummer C; Miglietta F;handle: 20.500.14243/392115
Vegetation has a substantial impact on the local climate. Land cover changes through afforestation or deforestation can amplify or mitigate climate warming by changes in biophysical and biogeochemical mechanisms. In the montane to subalpine area of the Eastern Alps in Europe, where forests have constantly expanded in the last four decades, data of meteorological stations show a consistent reduction in incoming global radiation for the period 2000–2015. To assess the potential role of forests in contributing to such a reduction, three site pairs in Central Europe with neighbouring forest and non-forest sites were analysed. In all the pairs, a lower amount of incoming radiation was recorded at the forest site. When biophysical mechanisms such as albedo, surface roughness and Bowen ratio changes were modelled together with changes in global radiation, the total radiative forcing accounted for a rate of change in air temperature was equal to 0.032 °C ± 0.01 °C per Wm ^−2 . These results suggest that local climate is influenced by land cover change through afforestation both via albedo and radiation feedbacks but also by means of indirect biophysical and species-dependent mechanisms. The data obtained for the site pairs in Central Europe are finally discussed to infer the occurrence of similar forest-driven effects in the Eastern Alps which may explain part of the solar dimming observed in high elevation weather stations.
Environmental Resear... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac4e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac4e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 Germany, France, France, France, France, France, France, Italy, France, ItalyPublisher:Wiley Giorgio Matteucci; Alexander Knohl; Alexander Knohl; Nina Buchmann; M. Aubinet; Markus Reichstein; Markus Reichstein; Philippe Ciais; Arnaud Carrara; Sibyll Schaphoff; Jean-François Soussana; Kim Pilegaard; Jukka Pumpanen; Bernard Heinesch; Wolfgang Cramer; Riccardo Valentini; Franco Miglietta; Denis Loustau; Thomas Grünwald; Ch. Bernhofer; Guenther Seufert; Timo Vesala; Dario Papale; Jérôme Ogée; Werner L. Kutsch; Serge Rambal; Giovanni Manca; María José Sanz; Maosheng Zhao; Vincent Allard; Nicolas Viovy; Steven W. Running; Jean-Marc Ourcival; André Granier; Martin Heimann;handle: 20.500.14243/154540
AbstractThe European CARBOEUROPE/FLUXNET monitoring sites, spatial remote sensing observations via the EOS‐MODIS sensor and ecosystem modelling provide independent and complementary views on the effect of the 2003 heatwave on the European biosphere's productivity and carbon balance. In our analysis, these data streams consistently demonstrate a strong negative anomaly of the primary productivity during the summer of 2003. FLUXNET eddy‐covariance data indicate that the drop in productivity was not primarily caused by high temperatures (‘heat stress’) but rather by limitation of water (drought stress) and that, contrary to the classical expectation about a heat wave, not only gross primary productivity but also ecosystem respiration declined by up to more than to 80 gC m−2 month−1. Anomalies of carbon and water fluxes were strongly correlated. While there are large between‐site differences in water‐use efficiency (WUE, 1–6 kg C kg−1 H2O) here defined as gross carbon uptake divided by evapotranspiration (WUE=GPP/ET), the year‐to‐year changes in WUE were small (<1 g kg−1) and quite similar for most sites (i.e. WUE decreased during the year of the heatwave). Remote sensing data from MODIS and AVHRR both indicate a strong negative anomaly of the fraction of absorbed photosynthetically active radiation in summer 2003, at more than five standard deviations of the previous years. The spatial differentiation of this anomaly follows climatic and land‐use patterns: Largest anomalies occur in the centre of the meteorological anomaly (central Western Europe) and in areas dominated by crops or grassland. A preliminary model intercomparison along a gradient from data‐oriented models to process‐oriented models indicates that all approaches are similarly describing the spatial pattern of ecosystem sensitivity to the climatic 2003 event with major exceptions in the Alps and parts of Eastern Europe, but differed with respect to their interannual variability.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 495 citations 495 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United States, ItalyPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research: L...NSF| Collaborative Research: LiT: ETBC: Plant-microbe feedback mechanisms affecting decomposition and nutrient availability and interactions with climate changeLeCain, Daniel R.; Smith, David C.; Morgan, Jack A.; Kimball, Bruce A.; Pendall, Elise (R17757); Miglietta, Franco;In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms(-1) average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.
PLoS ONE arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, United Kingdom, United Kingdom, United KingdomPublisher:Wiley Smith, Andrew R.; Lukac, Martin; Hood, Robin; Healey, John R.; Miglietta, Franco; Godbold, Douglas L.;Summary In a free‐air carbon dioxide (CO2) enrichment study (BangorFACE), Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of one‐, two‐ and three‐species mixtures (n = 4). The trees were exposed to ambient or elevated CO2 (580 μmol mol−1) for 4 yr, and aboveground growth characteristics were measured. In monoculture, the mean effect of CO2 enrichment on aboveground woody biomass was + 29, + 22 and + 16% for A. glutinosa, F. sylvatica and B. pendula, respectively. When the same species were grown in polyculture, the response to CO2 switched to + 10, + 7 and 0% for A. glutinosa, B. pendula and F. sylvatica, respectively. In ambient atmosphere, our species grown in polyculture increased aboveground woody biomass from 12.9 ± 1.4 to 18.9 ± 1.0 kg m−2, whereas, in an elevated CO2 atmosphere, aboveground woody biomass increased from 15.2 ± 0.6 to 20.2 ± 0.6 kg m−2. The overyielding effect of polyculture was smaller (+ 7%) in elevated CO2 than in an ambient atmosphere (+ 18%). Our results show that the aboveground response to elevated CO2 is affected significantly by intra‐ and interspecific competition, and that the elevated CO2 response may be reduced in forest communities comprising tree species with contrasting functional traits.
NERC Open Research A... arrow_drop_down Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingNew PhytologistArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingNew PhytologistArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, ItalyPublisher:Wiley Franco Miglietta; Martin Lukac; Douglas L. Godbold; Andrew R. Smith; Andrew R. Smith; Michael Bambrick;AbstractAs a consequence of land‐use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2. However, natural forests are often intimate mixtures of a number of co‐occurring species. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free‐air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol−1) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change.
Archivio istituziona... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 Belgium, ItalyPublisher:IEEE Chan, Cheung Wai; Dalponte, Michele; Ene, L. T.; Frizzera, Lorenzo; Miglietta, Franco; Gianelle, Damiano;Remote sensing can be considered a key instrument for studies related to forests and their dynamics. At present, the increasing availability of multisensor acquisitions over the same areas offers the possibility to combine data from different sensors. In this study high resolution airborne hyperspectral and ALS data at 0.4m resolution were acquired during summer 2012 in a complex forest ecosystem in the Alps, characterized by different tree species and difficult morphology. Using tree crown polygons from ALS and classification map from hyperspectral images, a species-specific tree canopy map was obtained. Then, height distribution of dominant tree species in three habitat strata were analyzed. Our initial experiments show the potential of the mix-sensors approach for further forest biophysical parameters estimation which is a vital part of forest inventory.
Archivio istituziona... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2013Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/whispers.2013.8080662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Vrije Universiteit Brussel Research PortalConference object . 2013Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/whispers.2013.8080662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 Italy, France, France, Netherlands, United Kingdom, Australia, France, Netherlands, BelgiumPublisher:Wiley Authors: Ainsworth, Elizabeth A.; Beier, Claus; Calfapietra, Carlo; Ceulemans, Reinhart; +28 AuthorsAinsworth, Elizabeth A.; Beier, Claus; Calfapietra, Carlo; Ceulemans, Reinhart; Durand Tardif, Marie-Hélène; Farquhar, Graham D; Godbold, Douglas L.; Hendrey, George R.; Hickler, Thomas; Kaduk, Joerg; Karnosky, David F.; Kimball, Bruce A.; Koerner, Christian; Koornneef, Maarten; Lafarge, Tanguy; Leakey, Andrew D. B.; Lewin, Keith F.; Long, Stephen P.; Manderscheid, Remy; Mcneil, David L.; Mies, Timothy A.; Miglietta, Franco; Morgan, Jack A; Nagy, John; Norby, Richard J; Norton, Robert M.; Percy, Kevin E.; Rogers, Alistair; Soussana, Jean-François; Stitt, Mark; Weigel, Hans-Joachim; White, Jeffrey W.;pmid: 18518914
handle: 20.500.14243/7541 , 10067/716000151162165141 , 2381/8977 , 1885/61006
ABSTRACTA rising global population and demand for protein‐rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO2] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO2] provides a unique opportunity to increase the productivity of C3 crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO2 responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO2 enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO2]. We propose a new generation of large‐scale, low‐cost per unit area FACE experiments to identify the most CO2‐responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61006Data sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPlant Cell & EnvironmentArticle . 2008Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 144 citations 144 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/61006Data sources: Bielefeld Academic Search Engine (BASE)Plant Cell & EnvironmentArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPlant Cell & EnvironmentArticle . 2008Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-3040.2008.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Research , Review 2015Embargo end date: 01 Jan 2015 France, France, France, United Kingdom, Switzerland, France, France, Belgium, Denmark, France, GermanyPublisher:Wiley Funded by:FWF | Climate extremes and gras..., EC | CARBO-EXTREME, SNSF | Assessing the spatiotempo... +2 projectsFWF| Climate extremes and grassland carbon dynamics ,EC| CARBO-EXTREME ,SNSF| Assessing the spatiotemporal dynamics of the North American Monsoon System using tree-ring stable isotope and vegetation model parameters ,ANR| OTMed ,ANR| AmidexMichael Bahn; Dorothe A. Frank; Franco Miglietta; Marijn van der Velde; Wolfgang Cramer; Sonia I. Seneviratne; Ariane Walz; Pete Smith; Markus Reichstein; Christian Beer; Christian Beer; Philippe Ciais; Sara Vicca; Ben Poulter; Andreas Ibrom; Jakob Zscheischler; Miguel A. Zavala; Nina Buchmann; Flurin Babst; Flurin Babst; David Frank; Martin Wattenbach; Anja Rammig; Anja Rammig; Kirsten Thonicke; Josep G. Canadell; Miguel D. Mahecha;AbstractExtreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance‐induced mechanisms and processes to also operate in an extreme context. The paucity of well‐defined studies currently renders a quantitative meta‐analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land‐cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground‐based observational case studies reveals that many regions in the (sub‐)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublikationsserver der Universität PotsdamReview . 2015Data sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12916&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu766 citations 766 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01444818Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2015Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverPublikationsserver der Universität PotsdamReview . 2015Data sources: Publikationsserver der Universität PotsdamAberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12916&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | EARLYHUMANIMPACT, EC | TREES4FUTUREEC| EARLYHUMANIMPACT ,EC| TREES4FUTURECarlo Barbante; Federico Carotenuto; Franco Miglietta; Claudio Donati; Tobias Weil; Jacopo Gabrieli; Carlotta De Filippo; Carlotta De Filippo; Massimo Pindo; Massimiliano Pasqui; Luisa Poto; Davide Albanese; Duccio Cavalieri; Duccio Cavalieri; Lorenzo Pavarini; Birgit Sattler;A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust.Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt.Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.
Archivio istituziona... arrow_drop_down Flore (Florence Research Repository)Article . 2017Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/38356Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-017-0249-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 8 Powered bymore_vert Archivio istituziona... arrow_drop_down Flore (Florence Research Repository)Article . 2017Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2017Full-Text: http://hdl.handle.net/10449/38356Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-017-0249-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2010Publisher:OpenAlex Chuixiang Yi; D. M. Ricciuto; Runze Li; John Wolbeck; Xiyan Xu; Mats Nilsson; Luís Aires; J. D. Albertson; Christof Ammann; M. Altaf Arain; Alessandro Araújo; Marc Aubinet; Mika Aurela; Zoltán Barcza; Alan G. Barr; Paul Berbigier; Jason Beringer; Christian Bernhofer; Andrew Black; Paul V. Bolstad; Fred C. Bosveld; M. S. J. Broadmeadow; Nina Buchmann; Sean P. Burns; Pierre Cellier; Jingming Chen; Jiquan Chen; Philippe Ciais; Robert Clement; Bruce D. Cook; Peter S. Curtis; D. B. Dail; Ebba Dellwik; Nicolas Delpierre; Ankur R. Desai; Sabina Dore; D. Dragoni; Bert G. Drake; Éric Dufrêne; Allison L. Dunn; J.A. Elbers; Werner Eugster; Matthias Falk; Christian Feigenwinter; Lawrence B. Flanagan; Thomas Foken; J. M. Frank; J. Fuhrer; Damiano Gianelle; Allen H. Goldstein; Mike Goulden; André Granier; T. Gruenwald; Lianhong Gu; Haiqiang Guo; Albin Hammerle; Shijie Han; Niall P. Hanan; László Haszpra; Bernard Heinesch; Carole Helfter; Dimmie Hendriks; Lindsay B. Hutley; Andreas Ibrom; C. Jacobs; Torbjoern Johansson; Marjan Jongen; Gabriel G. Katul; Gerard Kiely; Katja Klumpp; Alexander Knohl; Thomas E. Kolb; Werner L. Kutsch; Peter M. Lafleur; Tuomas Laurila; R. Leuning; Anders Lindroth; Heping Li; Benjamin Loubet; Giovanni Manca; Michal V. Marek; Hank A. Margolis; Timothy A. Martin; W. J. Massman; Roser Matamala; Giorgio Matteucci; Harry McCaughey; Lutz Merbold; Tilden Meyers; Mirco Migliavacca; Franco Miglietta; Laurent Misson; Meelis Moelder; John Moncrieff; Russell K. Monson; Leonardo Montagnani; M. Montes-Helu; Eddy Moors; Christine Moureaux; M. M. Mukelabai;Comprendre les relations entre le climat et l'échange de carbone par les écosystèmes terrestres est essentiel pour prédire les niveaux futurs de dioxyde de carbone atmosphérique en raison des effets d'accélération potentiels des rétroactions positives du cycle climat-carbone. Cependant, les relations directement observées entre le climat et l'échange de CO2 terrestre avec l'atmosphère à travers les biomes et les continents font défaut. Nous présentons ici des données décrivant les relations entre l'échange net de carbone par les écosystèmes (NEE) et les facteurs climatiques tels que mesurés à l'aide de la méthode de covariance de Foucault sur 125 sites uniques dans divers écosystèmes sur six continents avec un total de 559 années de site. Nous trouvons que le NEE observé aux sites de covariance tourbillonnaire est (1) une fonction forte de la température annuelle moyenne aux latitudes moyennes et élevées, (2) une fonction forte de la sécheresse aux latitudes moyennes et basses, et (3) une fonction à la fois de la température et de la sécheresse autour de la ceinture moyenne-latitudinale (45°N). La sensibilité du NEE à la température annuelle moyenne se décompose à ~ 16 °C (une valeur seuil de la température annuelle moyenne), au-delà de laquelle aucune augmentation supplémentaire de l'absorption de CO2 avec la température n'a été observée et la sécheresse influence les règles de dépassement de l'influence de la température. Comprender las relaciones entre el clima y el intercambio de carbono por parte de los ecosistemas terrestres es fundamental para predecir los niveles futuros de dióxido de carbono en la atmósfera debido a los posibles efectos aceleradores de las retroalimentaciones positivas del ciclo clima-carbono. Sin embargo, faltan relaciones directamente observadas entre el clima y el intercambio terrestre de CO2 con la atmósfera a través de biomas y continentes. Aquí presentamos datos que describen las relaciones entre el intercambio neto de carbono (NEE) del ecosistema y los factores climáticos medidos utilizando el método de covarianza de remolinos en 125 sitios únicos en varios ecosistemas de seis continentes con un total de 559 años-sitio. Encontramos que la NEE observada en los sitios de covarianza de remolinos es (1) una fuerte función de la temperatura media anual en latitudes medias y altas, (2) una fuerte función de sequedad en latitudes medias y bajas, y (3) una función tanto de la temperatura como de la sequedad alrededor del cinturón latitudinal medio (45°N). La sensibilidad de NEE a la temperatura media anual se rompe a ~ 16 °C (un valor umbral de la temperatura media anual), por encima del cual no se observó ningún aumento adicional de la absorción de CO2 con la temperatura y la influencia de la sequedad anula la influencia de la temperatura. Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45°N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 °C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence. يعد فهم العلاقات بين المناخ وتبادل الكربون بواسطة النظم الإيكولوجية الأرضية أمرًا بالغ الأهمية للتنبؤ بالمستويات المستقبلية لثاني أكسيد الكربون في الغلاف الجوي بسبب التأثيرات المتسارعة المحتملة للتغذية المرتدة الإيجابية لدورة المناخ والكربون. ومع ذلك، لا توجد علاقات ملحوظة مباشرة بين المناخ والتبادل الأرضي لثاني أكسيد الكربون مع الغلاف الجوي عبر المناطق الحيوية والقارات. نقدم هنا بيانات تصف العلاقات بين صافي تبادل النظام البيئي للكربون (NEE) والعوامل المناخية كما تم قياسها باستخدام طريقة التباين الدوامي في 125 موقعًا فريدًا في أنظمة بيئية مختلفة عبر ست قارات بإجمالي 559 سنة موقع. نجد أن NEE التي لوحظت في مواقع التباين الدوامي هي (1) وظيفة قوية لمتوسط درجة الحرارة السنوية عند خطوط العرض المتوسطة والعالية، (2) وظيفة قوية للجفاف عند خطوط العرض المتوسطة والمنخفضة، و (3) وظيفة لكل من درجة الحرارة والجفاف حول حزام العرض المتوسط (45درجةشمالاً). تنهار حساسية NEE لمتوسط درجة الحرارة السنوية عند حوالي 16 درجة مئوية (قيمة عتبة لمتوسط درجة الحرارة السنوية)، والتي لم يلاحظ فوقها أي زيادة أخرى في امتصاص ثاني أكسيد الكربون مع درجة الحرارة ويتجاوز تأثير الجفاف تأثير درجة الحرارة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j5vy4-fwn92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j5vy4-fwn92&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Germany, ItalyPublisher:IOP Publishing Tudoroiu M; Genesio L; Gioli B; Schume H; Knohl A; Brummer C; Miglietta F;handle: 20.500.14243/392115
Vegetation has a substantial impact on the local climate. Land cover changes through afforestation or deforestation can amplify or mitigate climate warming by changes in biophysical and biogeochemical mechanisms. In the montane to subalpine area of the Eastern Alps in Europe, where forests have constantly expanded in the last four decades, data of meteorological stations show a consistent reduction in incoming global radiation for the period 2000–2015. To assess the potential role of forests in contributing to such a reduction, three site pairs in Central Europe with neighbouring forest and non-forest sites were analysed. In all the pairs, a lower amount of incoming radiation was recorded at the forest site. When biophysical mechanisms such as albedo, surface roughness and Bowen ratio changes were modelled together with changes in global radiation, the total radiative forcing accounted for a rate of change in air temperature was equal to 0.032 °C ± 0.01 °C per Wm ^−2 . These results suggest that local climate is influenced by land cover change through afforestation both via albedo and radiation feedbacks but also by means of indirect biophysical and species-dependent mechanisms. The data obtained for the site pairs in Central Europe are finally discussed to infer the occurrence of similar forest-driven effects in the Eastern Alps which may explain part of the solar dimming observed in high elevation weather stations.
Environmental Resear... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac4e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aac4e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 Germany, France, France, France, France, France, France, Italy, France, ItalyPublisher:Wiley Giorgio Matteucci; Alexander Knohl; Alexander Knohl; Nina Buchmann; M. Aubinet; Markus Reichstein; Markus Reichstein; Philippe Ciais; Arnaud Carrara; Sibyll Schaphoff; Jean-François Soussana; Kim Pilegaard; Jukka Pumpanen; Bernard Heinesch; Wolfgang Cramer; Riccardo Valentini; Franco Miglietta; Denis Loustau; Thomas Grünwald; Ch. Bernhofer; Guenther Seufert; Timo Vesala; Dario Papale; Jérôme Ogée; Werner L. Kutsch; Serge Rambal; Giovanni Manca; María José Sanz; Maosheng Zhao; Vincent Allard; Nicolas Viovy; Steven W. Running; Jean-Marc Ourcival; André Granier; Martin Heimann;handle: 20.500.14243/154540
AbstractThe European CARBOEUROPE/FLUXNET monitoring sites, spatial remote sensing observations via the EOS‐MODIS sensor and ecosystem modelling provide independent and complementary views on the effect of the 2003 heatwave on the European biosphere's productivity and carbon balance. In our analysis, these data streams consistently demonstrate a strong negative anomaly of the primary productivity during the summer of 2003. FLUXNET eddy‐covariance data indicate that the drop in productivity was not primarily caused by high temperatures (‘heat stress’) but rather by limitation of water (drought stress) and that, contrary to the classical expectation about a heat wave, not only gross primary productivity but also ecosystem respiration declined by up to more than to 80 gC m−2 month−1. Anomalies of carbon and water fluxes were strongly correlated. While there are large between‐site differences in water‐use efficiency (WUE, 1–6 kg C kg−1 H2O) here defined as gross carbon uptake divided by evapotranspiration (WUE=GPP/ET), the year‐to‐year changes in WUE were small (<1 g kg−1) and quite similar for most sites (i.e. WUE decreased during the year of the heatwave). Remote sensing data from MODIS and AVHRR both indicate a strong negative anomaly of the fraction of absorbed photosynthetically active radiation in summer 2003, at more than five standard deviations of the previous years. The spatial differentiation of this anomaly follows climatic and land‐use patterns: Largest anomalies occur in the centre of the meteorological anomaly (central Western Europe) and in areas dominated by crops or grassland. A preliminary model intercomparison along a gradient from data‐oriented models to process‐oriented models indicates that all approaches are similarly describing the spatial pattern of ecosystem sensitivity to the climatic 2003 event with major exceptions in the Alps and parts of Eastern Europe, but differed with respect to their interannual variability.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 495 citations 495 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2007License: CC BY NCFull-Text: https://hal.science/hal-01757184Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2017INRIA a CCSD electronic archive serverArticle . 2007Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2007License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01224.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu