Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Piotr Babiński; Grzegorz Łabojko; Agata Łamacz;

    Abstract Coal gasification is accompanied with formation of tars that cause equipment problems and have to be removed from the raw gas. Our previous studies proved that nickel supported ceria-zirconia catalyst (Ni/CZ) reveals high activity towards decomposition of toluene and 1-methylnaphthalene (1-MN) via steam reforming reaction (SR). However, the components of the raw gas from coal gasification (i.e. H2, CO, CO2 and CH4) may influence the performance of Ni/CZ catalyst. The influence of particular components of the raw gas on catalyst performance during SR of model tar compounds have been studied and discussed in this paper. It has been found that H2 and CO addition to the steam reforming feed drastically decreases the activity of Ni/CZ catalyst, whereas CO2 presence enhances conversion of toluene and 1-MN mixture owing to the occurrence of dry reforming reaction (DR). It has also been observed that methane, which is present in the raw gas from coal gasification consumes partly both the H2O and CO2, causing some decrease in conversion of model tar compounds. The influence of contact time (tc) on hydrocarbons conversion and the participation of (DR) have been examined. As was observed, lower contact times lead to decrease in hydrocarbons conversion in SR, making the same participation of DR more pronounced than for higher tc values. This work proves that Ni/CZ catalyst can be used for removal of tarry compounds via the catalytic hot gas cleaning of the raw gas form coal gasification.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Piotr Babiński; Grzegorz Łabojko; Agata Łamacz;

    Abstract Coal gasification is accompanied with formation of tars that cause equipment problems and have to be removed from the raw gas. Our previous studies proved that nickel supported ceria-zirconia catalyst (Ni/CZ) reveals high activity towards decomposition of toluene and 1-methylnaphthalene (1-MN) via steam reforming reaction (SR). However, the components of the raw gas from coal gasification (i.e. H2, CO, CO2 and CH4) may influence the performance of Ni/CZ catalyst. The influence of particular components of the raw gas on catalyst performance during SR of model tar compounds have been studied and discussed in this paper. It has been found that H2 and CO addition to the steam reforming feed drastically decreases the activity of Ni/CZ catalyst, whereas CO2 presence enhances conversion of toluene and 1-MN mixture owing to the occurrence of dry reforming reaction (DR). It has also been observed that methane, which is present in the raw gas from coal gasification consumes partly both the H2O and CO2, causing some decrease in conversion of model tar compounds. The influence of contact time (tc) on hydrocarbons conversion and the participation of (DR) have been examined. As was observed, lower contact times lead to decrease in hydrocarbons conversion in SR, making the same participation of DR more pronounced than for higher tc values. This work proves that Ni/CZ catalyst can be used for removal of tarry compounds via the catalytic hot gas cleaning of the raw gas form coal gasification.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph