- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United States, Sweden, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesAuthors:Tamar Guy-Haim;
Tamar Guy-Haim
Tamar Guy-Haim in OpenAIREHarriet Alexander;
Tom W. Bell; Raven L. Bier; +15 AuthorsHarriet Alexander
Harriet Alexander in OpenAIRETamar Guy-Haim;
Tamar Guy-Haim
Tamar Guy-Haim in OpenAIREHarriet Alexander;
Tom W. Bell; Raven L. Bier;Harriet Alexander
Harriet Alexander in OpenAIRELauren E. Bortolotti;
Christian Briseño-Avena;Lauren E. Bortolotti
Lauren E. Bortolotti in OpenAIREXiaoli Dong;
Xiaoli Dong
Xiaoli Dong in OpenAIREAlison M. Flanagan;
Alison M. Flanagan
Alison M. Flanagan in OpenAIREJulia Grosse;
Lars Grossmann;Julia Grosse
Julia Grosse in OpenAIRESarah Hasnain;
Rachel Hovel; Cora A. Johnston; Dan R. Miller;Sarah Hasnain
Sarah Hasnain in OpenAIREMario Muscarella;
Akana E. Noto;Mario Muscarella
Mario Muscarella in OpenAIREAlexander J. Reisinger;
Heidi J. Smith; Karen Stamieszkin;Alexander J. Reisinger
Alexander J. Reisinger in OpenAIREhandle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Geophysical Union (AGU) Funded by:NSERCNSERCAuthors:Zhe Zhang;
Zhe Zhang
Zhe Zhang in OpenAIREZhenhua Li;
Tom W. Bell; Tom W. Bell; +4 AuthorsZhenhua Li
Zhenhua Li in OpenAIREZhe Zhang;
Zhe Zhang
Zhe Zhang in OpenAIREZhenhua Li;
Tom W. Bell; Tom W. Bell;Zhenhua Li
Zhenhua Li in OpenAIREYanping Li;
Yanping Li
Yanping Li in OpenAIRELauren E. Bortolotti;
Lauren E. Bortolotti;Lauren E. Bortolotti
Lauren E. Bortolotti in OpenAIRELlwellyn M. Armstrong;
Llwellyn M. Armstrong
Llwellyn M. Armstrong in OpenAIREdoi: 10.1029/2020wr028727
handle: 1912/27694
AbstractNumerous wetlands in the prairies of Canada provide important ecosystem services, yet are threatened by climate and land‐use changes. Understanding the impacts of climate change on prairie wetlands is critical to effective conservation planning. In this study, we construct a wetland model with surface water balance and ecoregions to project future distribution of wetlands. The climatic conditions downscaled from the Weather Research and Forecasting model were used to drive the Noah‐MP land surface model to obtain surface water balance. The climate change perturbation is derived from an ensemble of general circulation models using the pseudo global warming method, under the RCP8.5 emission scenario by the end of 21st century. The results show that climate change impacts on wetland extent are spatiotemporally heterogenous. Future wetter climate in the western Prairies will favor increased wetland abundance in both spring and summer. In the eastern Prairies, particularly in the mixed grassland and mid‐boreal upland, wetland areas will increase in spring but experience enhanced declines in summer due to strong evapotranspiration. When these effects of climate change are considered in light of historical drainage, they suggest a need for diverse conservation and restoration strategies. For the mixed grassland in the western Canadian Prairies, wetland restoration will be favorable, while the highly drained eastern Prairies will be challenged by the intensified hydrological cycle. The outcomes of this study will be useful to conservation agencies to ensure that current investments will continue to provide good conservation returns in the future.
Water Resources Rese... arrow_drop_down Water Resources ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020wr028727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water Resources Rese... arrow_drop_down Water Resources ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020wr028727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu