- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2006 AustraliaPublisher:Inter-Research Science Center Authors: Hoogenboom, Mia O.; Anthony, Kenneth R.N.; Connolly, Sean R.;doi: 10.3354/meps313001
Photoinhibition may constitute an energetic cost for photosynthetic organisms through damage to the photosynthetic apparatus, or by increased metabolism due to damage avoidance or repair. For several species of scleractinian corals, fluorescence techniques have revealed a significant reduction in photochemical efficiency of symbiotic dinoflagellates within coral tissue in response to excess light absorption. To date, it has been unclear whether or not photoinhibition has a negative impact on energy budgets in corals. We simultaneously quantified the effect of exposure to excessive light on net rates of photosynthesis and on fluorescence-derived photochemistry. We acclimated colonies of the reef-building coral Turbinaria mesenterina to 3 different irradiance regimes in the laboratory. The corals were then exposed to light levels up to 10 times higher than their acclimation irradiance and assayed for rates of photosynthesis and photochemical yields. Results indicated that daily costs of photoinhibition are negligible. Reduced net rates of photosynthesis in the afternoon, compared to the morning, were predominantly due to enhanced afternoon rates of dark respiration. However, photoacclimation to high light levels reduces daily energy acquisition in the long term, primarily due to decreased chlorophyll concentrations. Therefore, although changes in the photosynthetic activity of symbiotic dinoflagellates over a diurnal irradiance cycle do not cause a measurable decline in net oxygen evolution for coral colonies, repeated exposure to excessive irradiance can reduce energy acquisition per unit surface area, and hence influence the upper limit of the depth distribution of scleractinian corals.
Marine Ecology Progr... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps313001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Marine Ecology Progr... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps313001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:American Association for the Advancement of Science (AAAS) Ronald H. Karlson; Ronald H. Karlson; Terry P. Hughes; Terry P. Hughes; David R. Bellwood; David R. Bellwood; Sean R. Connolly;pmid: 16123298
Distributions of numerical abundance and resource use among species are fundamental aspects of community structure. Here we characterize these patterns for tropical reef fishes and corals across a 10,000-kilometer biodiversity gradient. Numerical abundance and resource-use distributions have similar shapes, but they emerge at markedly different scales. These results are consistent with a controversial null hypothesis regarding community structure, according to which abundance distributions arise from the interplay of multiple stochastic environmental and demographic factors. Our findings underscore the importance of robust conservation strategies that are appropriately scaled to the broad suite of environmental processes that help sustain biodiversity.
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1113281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 131 citations 131 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1113281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Metapopulation dynamics o..., ARC | Environmental management ...ARC| Metapopulation dynamics of coral communities on the Great Barrier Reef ,ARC| Environmental management of coral reef resilienceAuthors: Anthony, Kenneth R. N.; Connolly, Sean R.;pmid: 15322896
The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy losses will prove to be important determinants of niche differences in other systems as well.
Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-004-1647-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-004-1647-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, AustraliaPublisher:Wiley Authors: Ban, Stephen S.; Graham, Nicholas A. J.; Connolly, Sean R.;doi: 10.1111/gcb.12453
pmid: 24166756
AbstractConcern is growing about the potential effects of interacting multiple stressors, especially as the global climate changes. We provide a comprehensive review of multiple stressor interactions in coral reef ecosystems, which are widely considered to be one of the most sensitive ecosystems to global change. First, we synthesized coral reef studies that examined interactions of two or more stressors, highlighting stressor interactions (where one stressor directly influences another) and potentially synergistic effects on response variables (where two stressors interact to produce an effect that is greater than purely additive). For stressor‐stressor interactions, we found 176 studies that examined at least 2 of the 13 stressors of interest. Applying network analysis to analyze relationships between stressors, we found that pathogens were exacerbated by more costressors than any other stressor, with ca. 78% of studies reporting an enhancing effect by another stressor. Sedimentation, storms, and water temperature directly affected the largest number of other stressors. Pathogens, nutrients, and crown‐of‐thorns starfish were the most‐influenced stressors. We found 187 studies that examined the effects of two or more stressors on a third dependent variable. The interaction of irradiance and temperature on corals has been the subject of more research (62 studies, 33% of the total) than any other combination of stressors, with many studies reporting a synergistic effect on coral symbiont photosynthetic performance (n = 19). Second, we performed a quantitative meta‐analysis of existing literature on this most‐studied interaction (irradiance and temperature). We found that the mean effect size of combined treatments was statistically indistinguishable from a purely additive interaction, although it should be noted that the sample size was relatively small (n = 26). Overall, although in aggregate a large body of literature examines stressor effects on coral reefs and coral organisms, considerable gaps remain for numerous stressor interactions and effects, and insufficient quantitative evidence exists to suggest that the prevailing type of stressor interaction is synergistic.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 294 citations 294 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Public Library of Science (PLoS) Funded by:ARC | Ecological consequences o...ARC| Ecological consequences of hydrodynamic disturbancesAuthors: Madin, Joshua S.; Hughes, Terry P.; Connolly, Sean R.;Two facets of climate change--increased tropical storm intensity and ocean acidification--are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms' short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Australia, United KingdomPublisher:The Royal Society Authors: Maria Dornelas; Joshua S. Madin; Andrew H. Baird; Sean R. Connolly;Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 21 Powered bymore_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL180100036Authors: Madeleine J. H. van Oppen; Madeleine J. H. van Oppen; Mia O. Hoogenboom; Kevin R. Bairos-Novak; +2 AuthorsMadeleine J. H. van Oppen; Madeleine J. H. van Oppen; Mia O. Hoogenboom; Kevin R. Bairos-Novak; Sean R. Connolly; Sean R. Connolly;AbstractAnthropogenic climate change is a rapidly intensifying selection pressure on biodiversity across the globe and, particularly, on the world's coral reefs. The rate of adaptation to climate change is proportional to the amount of phenotypic variation that can be inherited by subsequent generations (i.e., narrow‐sense heritability, h2). Thus, traits that have higher heritability (e.g., h2 > 0.5) are likely to adapt to future conditions faster than traits with lower heritability (e.g., h2 < 0.1). Here, we synthesize 95 heritability estimates across 19 species of reef‐building corals. Our meta‐analysis reveals low heritability (h2 < 0.25) of gene expression metrics, intermediate heritability (h2 = 0.25–0.50) of photochemistry, growth, and bleaching, and high heritability (h2 > 0.50) for metrics related to survival and immune responses. Some of these values are higher than typically observed in other taxa, such as survival and growth, while others were more comparable, such as gene expression and photochemistry. There was no detectable effect of temperature on heritability, but narrow‐sense heritability estimates were generally lower than broad‐sense estimates, indicative of significant non‐additive genetic variation across traits. Trait heritability also varied depending on coral life stage, with bleaching and growth in juveniles generally having lower heritability compared to bleaching and growth in larvae and adults. These differences may be the result of previous stabilizing selection on juveniles or may be due to constrained evolution resulting from genetic trade‐offs or genetic correlations between growth and thermotolerance. While we find no evidence that heritability decreases under temperature stress, explicit tests of the heritability of thermal tolerance itself—such as coral thermal reaction norm shape—are lacking. Nevertheless, our findings overall reveal high trait heritability for the majority of coral traits, suggesting corals may have a greater potential to adapt to climate change than has been assumed in recent evolutionary models.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1111/gcb.15829Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1111/gcb.15829Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex C. Mark Eakin; Denise Devotta; Scott F. Heron; Sean R. Connolly; Gang Liu; Erick Geiger; Jacqueline De La Cour; Andrea Gómez; William Skirving; Andrew H. Baird; Neal E. Cantin; Courtney S. Couch; Simon D. Donner; James Gilmour; Manuel González‐Rivero; Mishal Gudka; Hugo B. Harrison; Gregor Hodgson; Ove Hoegh‐Guldberg; Andrew S. Hoey; Mia O. Hoogenboom; Terry P. Hughes; Meaghan E. Johnson; James T. Kerry; Jennifer Mihaly; Aarón Israel Muñiz-Castillo; David Obura; Morgan S. Pratchett; Andrea Rivera-Sosa; Claire L. Ross; Jennifer Stein; Angus Thompson; Gergely Torda; T. Shay Viehman; Cory Walter; Shaun K. Wilson; Benjamin John Marsh; Blake Spady; Noel Dyer; Thomas C. Adam; Mahsa Alidoostsalimi; Parisa Alidoostsalimi; Lorenzo Álvarez‐Filip; Mariana Álvarez‐Noriega; Keisha D. Bahr; Peter Barnes; José Barraza Sandoval; Julia K. Baum; Andrew G. Bauman; Maria Beger; Kathryn Berry; Pia Bessell‐Browne; Lionel Bigot; Victor Bonito; Ole Brodnicke; David R. Burdick; Deron E. Burkepile; April J. Burt; John A. Burt; Ian S. Butler; Jamie M. Caldwell; Yannick Chancerelle; Chaolun Allen Chen; Kah-Leng Cherh; Michael J. Childress; Darren Coken; Georgia Coward; M. James C. Crabbe; Thomas Dallison; Steve Dalton; Thomas M. DeCarlo; Crawford Drury; Ian Drysdale; Clinton B. Edwards; Linda Eggertsen; Eylem Elma; Rosmin S. Ennis; Richard D. Evans; Gal Eyal; Douglas Fenner; Baruch Figueroa-Zavala; Jay Fisch; Michael D. Fox; Elena Gadoutsis; Antoine Gilbert; Andrew R. Halford; Tom Heintz; James Hewlett; Jean‐Paul A. Hobbs; Whitney Hoot; Peter Houk; Lyza Johnston; Michelle Johnston; Hajime Kayanne; Emma V. Kennedy; Ruy Kenji Papa de Kikuchi; Ulrike Kloiber; Haruko Koike; Lindsey Kramer; Chao‐Yang Kuo;Resumen El calentamiento del océano está aumentando la incidencia, la escala y la gravedad del blanqueamiento y la mortalidad de los corales a escala mundial, que culminó en el tercer evento mundial de blanqueamiento de corales que ocurrió durante las olas de calor marinas récord de 2014-2017. Si bien los efectos locales de estos eventos han sido ampliamente reportados, las implicaciones globales siguen siendo desconocidas. El análisis de 15.066 estudios de arrecifes durante 2014-2017 reveló que el 80% de los arrecifes estudiados experimentaron un blanqueamiento significativo de los corales y el 35% experimentó una mortalidad significativa de los corales. El alcance global del blanqueamiento y la mortalidad significativos de los corales se evaluó extrapolando los resultados de los estudios de arrecifes utilizando datos completos de teledetección del estrés por calor regional. Este modelo predijo que el 51% de los arrecifes de coral del mundo sufrieron un blanqueamiento significativo y una mortalidad significativa del 15%, superando el daño de cualquier evento de blanqueamiento global anterior. Estas observaciones demuestran que el daño generalizado del calentamiento global a los arrecifes de coral se está acelerando y subraya la amenaza que el cambio climático antropogénico representa para la transformación irreversible de estos ecosistemas esenciales. Résumé Le réchauffement des océans augmente l'incidence, l'ampleur et la gravité du blanchiment et de la mortalité des coraux à l'échelle mondiale, culminant avec le troisième événement mondial de blanchiment des coraux survenu lors de vagues de chaleur marines record de 2014-2017. Bien que les effets locaux de ces événements aient été largement rapportés, les implications mondiales restent inconnues. L'analyse de 15 066 enquêtes sur les récifs au cours de la période 2014-2017 a révélé que 80 % des récifs étudiés ont connu un blanchissement important des coraux et 35 % ont connu une mortalité importante des coraux. L'étendue mondiale du blanchiment et de la mortalité importants des coraux a été évaluée en extrapolant les résultats des enquêtes sur les récifs à l'aide de données complètes de télédétection du stress thermique régional. Ce modèle prévoyait que 51 % des récifs coralliens du monde souffraient d'un blanchissement important et 15 % d'une mortalité importante, dépassant les dommages causés par tout événement de blanchissement mondial antérieur. Ces observations démontrent que les dommages généralisés causés par le réchauffement climatique aux récifs coralliens s'accélèrent et soulignent la menace que le changement climatique anthropique fait peser sur la transformation irréversible de ces écosystèmes essentiels. Abstract Ocean warming is increasing the incidence, scale, and severity of global-scale coral bleaching and mortality, culminating in the third global coral bleaching event that occurred during record marine heatwaves of 2014-2017. While local effects of these events have been widely reported, the global implications remain unknown. Analysis of 15,066 reef surveys during 2014-2017 revealed that 80% of surveyed reefs experienced significant coral bleaching and 35% experienced significant coral mortality. The global extent of significant coral bleaching and mortality was assessed by extrapolating results from reef surveys using comprehensive remote-sensing data of regional heat stress. This model predicted that 51% of the world's coral reefs suffered significant bleaching and 15% significant mortality, surpassing damage from any prior global bleaching event. These observations demonstrate that global warming's widespread damage to coral reefs is accelerating and underscores the threat anthropogenic climate change poses for the irreversible transformation of these essential ecosystems. يؤدي ارتفاع درجة حرارة المحيطات إلى زيادة حدوث وحجم وشدة تبييض الشعاب المرجانية ونفوقها على نطاق عالمي، وبلغت ذروتها في الحدث العالمي الثالث لتبييض الشعاب المرجانية الذي حدث خلال موجات الحر البحرية القياسية في الفترة 2014-2017. في حين تم الإبلاغ عن الآثار المحلية لهذه الأحداث على نطاق واسع، إلا أن الآثار العالمية لا تزال غير معروفة. كشف تحليل 15,066 مسحًا للشعاب المرجانية خلال الفترة 2014-2017 أن 80 ٪ من الشعاب المرجانية التي تم مسحها عانت من ابيضاض مرجاني كبير و 35 ٪ عانت من وفيات مرجانية كبيرة. تم تقييم المدى العالمي للتبييض والوفيات المرجانية الكبيرة من خلال استقراء النتائج من المسوحات المرجانية باستخدام بيانات شاملة للاستشعار عن بعد للإجهاد الحراري الإقليمي. وتوقع هذا النموذج أن 51 ٪ من الشعاب المرجانية في العالم عانت من تبييض كبير و 15 ٪ من الوفيات الكبيرة، متجاوزة الأضرار الناجمة عن أي حدث تبييض عالمي سابق. تُظهر هذه الملاحظات أن الأضرار الواسعة النطاق للاحترار العالمي التي لحقت بالشعاب المرجانية تتسارع وتؤكد التهديد الذي يشكله تغير المناخ البشري المنشأ على التحول الذي لا رجعة فيه لهذه النظم الإيكولوجية الأساسية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j6mnm-5vs62&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j6mnm-5vs62&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Wiley Authors: Hoogenboom, Mia O.; Connolly, Sean R.;doi: 10.1890/07-2010.1
pmid: 19341146
The “fundamental niche” is the range of conditions under which an organism can survive and reproduce, measured in the absence of biotic interactions. Niche measurements are often based on statistical relationships between species presence and measured environmental variables, or inferred from measured responses of species along hypothesized niche axes. In this study, we use novel, process‐based models of how irradiance and gas diffusion influence photosynthesis and respiration to predict niche dimensions for three coral species: Acropora nasuta, Montipora foliosa, and Leptoria phrygia. We use a combination of mathematical modeling, laboratory experiments, and field observations to establish the link between energy acquisition and the dominant environmental gradients on reefs: light intensity and water flow velocity. Our approach allows us to quantify how the shape of the niche varies in response to light and flow conditions. The model predicts that, due to its higher photosynthetic capacity, the branching coral A. nasuta has a positive energy balance over a wider range of conditions than both a massive species (L. phrygia) and a foliose species (M. foliosa). Moreover, colony size influences niche width, with larger colonies of all three species achieving a positive energy balance over a broader range of conditions than small colonies. Comparison of model predictions with field data demonstrated that tissue biomass and reproductive output are significantly and positively correlated with predicted energy acquisition. These results show how interactions between light and flow determine organism performance along environmental gradients on coral reefs. In addition, this study demonstrates the utility of process‐based models for quantifying how physiology influences ecology, and for predicting the ecological consequences of varying environmental conditions.
Ecology arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-2010.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-2010.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV C. Mark Eakin; James T. Kerry; James T. Kerry; Migdonio A. Gonzalez; Joanne Moneghetti; Jorge G. Álvarez-Romero; Scott F. Heron; Terry P. Hughes; Sean R. Connolly; Sean R. Connolly;pmid: 34739821
The frequency, intensity, and spatial scale of climate extremes are changing rapidly due to anthropogenic global warming.1,2 A growing research challenge is to understand how multiple climate-driven disturbances interact with each other over multi-decadal time frames, generating combined effects that cannot be predicted from single events alone.3-5 Here we examine the emergent dynamics of five coral bleaching events along the 2,300 km length of the Great Barrier Reef that affected >98% of the Reef between 1998 and 2020. We show that the bleaching responses of corals to a given level of heat exposure differed in each event and were strongly influenced by contingency and the spatial overlap and strength of interactions between events. Naive regions that escaped bleaching for a decade or longer were the most susceptible to bouts of heat exposure. Conversely, when pairs of successive bleaching episodes were close together (1-3 years apart), the thermal threshold for severe bleaching increased because the earlier event hardened regions of the Great Barrier Reef to further impacts. In the near future, the biological responses to recurrent bleaching events may become stronger as the cumulative geographic footprint expands further, potentially impairing the stock-recruitment relationships among lightly and severely bleached reefs with diverse recent histories. Understanding the emergent properties and collective dynamics of recurrent disturbances will be critical for predicting spatial refuges and cumulative ecological responses, and for managing the longer-term impacts of anthropogenic climate change on ecosystems.
Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.10.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.10.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2006 AustraliaPublisher:Inter-Research Science Center Authors: Hoogenboom, Mia O.; Anthony, Kenneth R.N.; Connolly, Sean R.;doi: 10.3354/meps313001
Photoinhibition may constitute an energetic cost for photosynthetic organisms through damage to the photosynthetic apparatus, or by increased metabolism due to damage avoidance or repair. For several species of scleractinian corals, fluorescence techniques have revealed a significant reduction in photochemical efficiency of symbiotic dinoflagellates within coral tissue in response to excess light absorption. To date, it has been unclear whether or not photoinhibition has a negative impact on energy budgets in corals. We simultaneously quantified the effect of exposure to excessive light on net rates of photosynthesis and on fluorescence-derived photochemistry. We acclimated colonies of the reef-building coral Turbinaria mesenterina to 3 different irradiance regimes in the laboratory. The corals were then exposed to light levels up to 10 times higher than their acclimation irradiance and assayed for rates of photosynthesis and photochemical yields. Results indicated that daily costs of photoinhibition are negligible. Reduced net rates of photosynthesis in the afternoon, compared to the morning, were predominantly due to enhanced afternoon rates of dark respiration. However, photoacclimation to high light levels reduces daily energy acquisition in the long term, primarily due to decreased chlorophyll concentrations. Therefore, although changes in the photosynthetic activity of symbiotic dinoflagellates over a diurnal irradiance cycle do not cause a measurable decline in net oxygen evolution for coral colonies, repeated exposure to excessive irradiance can reduce energy acquisition per unit surface area, and hence influence the upper limit of the depth distribution of scleractinian corals.
Marine Ecology Progr... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps313001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Marine Ecology Progr... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps313001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 AustraliaPublisher:American Association for the Advancement of Science (AAAS) Ronald H. Karlson; Ronald H. Karlson; Terry P. Hughes; Terry P. Hughes; David R. Bellwood; David R. Bellwood; Sean R. Connolly;pmid: 16123298
Distributions of numerical abundance and resource use among species are fundamental aspects of community structure. Here we characterize these patterns for tropical reef fishes and corals across a 10,000-kilometer biodiversity gradient. Numerical abundance and resource-use distributions have similar shapes, but they emerge at markedly different scales. These results are consistent with a controversial null hypothesis regarding community structure, according to which abundance distributions arise from the interplay of multiple stochastic environmental and demographic factors. Our findings underscore the importance of robust conservation strategies that are appropriately scaled to the broad suite of environmental processes that help sustain biodiversity.
Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1113281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 131 citations 131 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Science arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1113281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Metapopulation dynamics o..., ARC | Environmental management ...ARC| Metapopulation dynamics of coral communities on the Great Barrier Reef ,ARC| Environmental management of coral reef resilienceAuthors: Anthony, Kenneth R. N.; Connolly, Sean R.;pmid: 15322896
The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy losses will prove to be important determinants of niche differences in other systems as well.
Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-004-1647-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-004-1647-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, AustraliaPublisher:Wiley Authors: Ban, Stephen S.; Graham, Nicholas A. J.; Connolly, Sean R.;doi: 10.1111/gcb.12453
pmid: 24166756
AbstractConcern is growing about the potential effects of interacting multiple stressors, especially as the global climate changes. We provide a comprehensive review of multiple stressor interactions in coral reef ecosystems, which are widely considered to be one of the most sensitive ecosystems to global change. First, we synthesized coral reef studies that examined interactions of two or more stressors, highlighting stressor interactions (where one stressor directly influences another) and potentially synergistic effects on response variables (where two stressors interact to produce an effect that is greater than purely additive). For stressor‐stressor interactions, we found 176 studies that examined at least 2 of the 13 stressors of interest. Applying network analysis to analyze relationships between stressors, we found that pathogens were exacerbated by more costressors than any other stressor, with ca. 78% of studies reporting an enhancing effect by another stressor. Sedimentation, storms, and water temperature directly affected the largest number of other stressors. Pathogens, nutrients, and crown‐of‐thorns starfish were the most‐influenced stressors. We found 187 studies that examined the effects of two or more stressors on a third dependent variable. The interaction of irradiance and temperature on corals has been the subject of more research (62 studies, 33% of the total) than any other combination of stressors, with many studies reporting a synergistic effect on coral symbiont photosynthetic performance (n = 19). Second, we performed a quantitative meta‐analysis of existing literature on this most‐studied interaction (irradiance and temperature). We found that the mean effect size of combined treatments was statistically indistinguishable from a purely additive interaction, although it should be noted that the sample size was relatively small (n = 26). Overall, although in aggregate a large body of literature examines stressor effects on coral reefs and coral organisms, considerable gaps remain for numerous stressor interactions and effects, and insufficient quantitative evidence exists to suggest that the prevailing type of stressor interaction is synergistic.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 294 citations 294 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Public Library of Science (PLoS) Funded by:ARC | Ecological consequences o...ARC| Ecological consequences of hydrodynamic disturbancesAuthors: Madin, Joshua S.; Hughes, Terry P.; Connolly, Sean R.;Two facets of climate change--increased tropical storm intensity and ocean acidification--are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms' short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0046637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Australia, United KingdomPublisher:The Royal Society Authors: Maria Dornelas; Joshua S. Madin; Andrew H. Baird; Sean R. Connolly;Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 21 Powered bymore_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Funded by:ARC | Australian Laureate Fello...ARC| Australian Laureate Fellowships - Grant ID: FL180100036Authors: Madeleine J. H. van Oppen; Madeleine J. H. van Oppen; Mia O. Hoogenboom; Kevin R. Bairos-Novak; +2 AuthorsMadeleine J. H. van Oppen; Madeleine J. H. van Oppen; Mia O. Hoogenboom; Kevin R. Bairos-Novak; Sean R. Connolly; Sean R. Connolly;AbstractAnthropogenic climate change is a rapidly intensifying selection pressure on biodiversity across the globe and, particularly, on the world's coral reefs. The rate of adaptation to climate change is proportional to the amount of phenotypic variation that can be inherited by subsequent generations (i.e., narrow‐sense heritability, h2). Thus, traits that have higher heritability (e.g., h2 > 0.5) are likely to adapt to future conditions faster than traits with lower heritability (e.g., h2 < 0.1). Here, we synthesize 95 heritability estimates across 19 species of reef‐building corals. Our meta‐analysis reveals low heritability (h2 < 0.25) of gene expression metrics, intermediate heritability (h2 = 0.25–0.50) of photochemistry, growth, and bleaching, and high heritability (h2 > 0.50) for metrics related to survival and immune responses. Some of these values are higher than typically observed in other taxa, such as survival and growth, while others were more comparable, such as gene expression and photochemistry. There was no detectable effect of temperature on heritability, but narrow‐sense heritability estimates were generally lower than broad‐sense estimates, indicative of significant non‐additive genetic variation across traits. Trait heritability also varied depending on coral life stage, with bleaching and growth in juveniles generally having lower heritability compared to bleaching and growth in larvae and adults. These differences may be the result of previous stabilizing selection on juveniles or may be due to constrained evolution resulting from genetic trade‐offs or genetic correlations between growth and thermotolerance. While we find no evidence that heritability decreases under temperature stress, explicit tests of the heritability of thermal tolerance itself—such as coral thermal reaction norm shape—are lacking. Nevertheless, our findings overall reveal high trait heritability for the majority of coral traits, suggesting corals may have a greater potential to adapt to climate change than has been assumed in recent evolutionary models.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1111/gcb.15829Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2021Full-Text: https://doi.org/10.1111/gcb.15829Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex C. Mark Eakin; Denise Devotta; Scott F. Heron; Sean R. Connolly; Gang Liu; Erick Geiger; Jacqueline De La Cour; Andrea Gómez; William Skirving; Andrew H. Baird; Neal E. Cantin; Courtney S. Couch; Simon D. Donner; James Gilmour; Manuel González‐Rivero; Mishal Gudka; Hugo B. Harrison; Gregor Hodgson; Ove Hoegh‐Guldberg; Andrew S. Hoey; Mia O. Hoogenboom; Terry P. Hughes; Meaghan E. Johnson; James T. Kerry; Jennifer Mihaly; Aarón Israel Muñiz-Castillo; David Obura; Morgan S. Pratchett; Andrea Rivera-Sosa; Claire L. Ross; Jennifer Stein; Angus Thompson; Gergely Torda; T. Shay Viehman; Cory Walter; Shaun K. Wilson; Benjamin John Marsh; Blake Spady; Noel Dyer; Thomas C. Adam; Mahsa Alidoostsalimi; Parisa Alidoostsalimi; Lorenzo Álvarez‐Filip; Mariana Álvarez‐Noriega; Keisha D. Bahr; Peter Barnes; José Barraza Sandoval; Julia K. Baum; Andrew G. Bauman; Maria Beger; Kathryn Berry; Pia Bessell‐Browne; Lionel Bigot; Victor Bonito; Ole Brodnicke; David R. Burdick; Deron E. Burkepile; April J. Burt; John A. Burt; Ian S. Butler; Jamie M. Caldwell; Yannick Chancerelle; Chaolun Allen Chen; Kah-Leng Cherh; Michael J. Childress; Darren Coken; Georgia Coward; M. James C. Crabbe; Thomas Dallison; Steve Dalton; Thomas M. DeCarlo; Crawford Drury; Ian Drysdale; Clinton B. Edwards; Linda Eggertsen; Eylem Elma; Rosmin S. Ennis; Richard D. Evans; Gal Eyal; Douglas Fenner; Baruch Figueroa-Zavala; Jay Fisch; Michael D. Fox; Elena Gadoutsis; Antoine Gilbert; Andrew R. Halford; Tom Heintz; James Hewlett; Jean‐Paul A. Hobbs; Whitney Hoot; Peter Houk; Lyza Johnston; Michelle Johnston; Hajime Kayanne; Emma V. Kennedy; Ruy Kenji Papa de Kikuchi; Ulrike Kloiber; Haruko Koike; Lindsey Kramer; Chao‐Yang Kuo;Resumen El calentamiento del océano está aumentando la incidencia, la escala y la gravedad del blanqueamiento y la mortalidad de los corales a escala mundial, que culminó en el tercer evento mundial de blanqueamiento de corales que ocurrió durante las olas de calor marinas récord de 2014-2017. Si bien los efectos locales de estos eventos han sido ampliamente reportados, las implicaciones globales siguen siendo desconocidas. El análisis de 15.066 estudios de arrecifes durante 2014-2017 reveló que el 80% de los arrecifes estudiados experimentaron un blanqueamiento significativo de los corales y el 35% experimentó una mortalidad significativa de los corales. El alcance global del blanqueamiento y la mortalidad significativos de los corales se evaluó extrapolando los resultados de los estudios de arrecifes utilizando datos completos de teledetección del estrés por calor regional. Este modelo predijo que el 51% de los arrecifes de coral del mundo sufrieron un blanqueamiento significativo y una mortalidad significativa del 15%, superando el daño de cualquier evento de blanqueamiento global anterior. Estas observaciones demuestran que el daño generalizado del calentamiento global a los arrecifes de coral se está acelerando y subraya la amenaza que el cambio climático antropogénico representa para la transformación irreversible de estos ecosistemas esenciales. Résumé Le réchauffement des océans augmente l'incidence, l'ampleur et la gravité du blanchiment et de la mortalité des coraux à l'échelle mondiale, culminant avec le troisième événement mondial de blanchiment des coraux survenu lors de vagues de chaleur marines record de 2014-2017. Bien que les effets locaux de ces événements aient été largement rapportés, les implications mondiales restent inconnues. L'analyse de 15 066 enquêtes sur les récifs au cours de la période 2014-2017 a révélé que 80 % des récifs étudiés ont connu un blanchissement important des coraux et 35 % ont connu une mortalité importante des coraux. L'étendue mondiale du blanchiment et de la mortalité importants des coraux a été évaluée en extrapolant les résultats des enquêtes sur les récifs à l'aide de données complètes de télédétection du stress thermique régional. Ce modèle prévoyait que 51 % des récifs coralliens du monde souffraient d'un blanchissement important et 15 % d'une mortalité importante, dépassant les dommages causés par tout événement de blanchissement mondial antérieur. Ces observations démontrent que les dommages généralisés causés par le réchauffement climatique aux récifs coralliens s'accélèrent et soulignent la menace que le changement climatique anthropique fait peser sur la transformation irréversible de ces écosystèmes essentiels. Abstract Ocean warming is increasing the incidence, scale, and severity of global-scale coral bleaching and mortality, culminating in the third global coral bleaching event that occurred during record marine heatwaves of 2014-2017. While local effects of these events have been widely reported, the global implications remain unknown. Analysis of 15,066 reef surveys during 2014-2017 revealed that 80% of surveyed reefs experienced significant coral bleaching and 35% experienced significant coral mortality. The global extent of significant coral bleaching and mortality was assessed by extrapolating results from reef surveys using comprehensive remote-sensing data of regional heat stress. This model predicted that 51% of the world's coral reefs suffered significant bleaching and 15% significant mortality, surpassing damage from any prior global bleaching event. These observations demonstrate that global warming's widespread damage to coral reefs is accelerating and underscores the threat anthropogenic climate change poses for the irreversible transformation of these essential ecosystems. يؤدي ارتفاع درجة حرارة المحيطات إلى زيادة حدوث وحجم وشدة تبييض الشعاب المرجانية ونفوقها على نطاق عالمي، وبلغت ذروتها في الحدث العالمي الثالث لتبييض الشعاب المرجانية الذي حدث خلال موجات الحر البحرية القياسية في الفترة 2014-2017. في حين تم الإبلاغ عن الآثار المحلية لهذه الأحداث على نطاق واسع، إلا أن الآثار العالمية لا تزال غير معروفة. كشف تحليل 15,066 مسحًا للشعاب المرجانية خلال الفترة 2014-2017 أن 80 ٪ من الشعاب المرجانية التي تم مسحها عانت من ابيضاض مرجاني كبير و 35 ٪ عانت من وفيات مرجانية كبيرة. تم تقييم المدى العالمي للتبييض والوفيات المرجانية الكبيرة من خلال استقراء النتائج من المسوحات المرجانية باستخدام بيانات شاملة للاستشعار عن بعد للإجهاد الحراري الإقليمي. وتوقع هذا النموذج أن 51 ٪ من الشعاب المرجانية في العالم عانت من تبييض كبير و 15 ٪ من الوفيات الكبيرة، متجاوزة الأضرار الناجمة عن أي حدث تبييض عالمي سابق. تُظهر هذه الملاحظات أن الأضرار الواسعة النطاق للاحترار العالمي التي لحقت بالشعاب المرجانية تتسارع وتؤكد التهديد الذي يشكله تغير المناخ البشري المنشأ على التحول الذي لا رجعة فيه لهذه النظم الإيكولوجية الأساسية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j6mnm-5vs62&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/j6mnm-5vs62&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Wiley Authors: Hoogenboom, Mia O.; Connolly, Sean R.;doi: 10.1890/07-2010.1
pmid: 19341146
The “fundamental niche” is the range of conditions under which an organism can survive and reproduce, measured in the absence of biotic interactions. Niche measurements are often based on statistical relationships between species presence and measured environmental variables, or inferred from measured responses of species along hypothesized niche axes. In this study, we use novel, process‐based models of how irradiance and gas diffusion influence photosynthesis and respiration to predict niche dimensions for three coral species: Acropora nasuta, Montipora foliosa, and Leptoria phrygia. We use a combination of mathematical modeling, laboratory experiments, and field observations to establish the link between energy acquisition and the dominant environmental gradients on reefs: light intensity and water flow velocity. Our approach allows us to quantify how the shape of the niche varies in response to light and flow conditions. The model predicts that, due to its higher photosynthetic capacity, the branching coral A. nasuta has a positive energy balance over a wider range of conditions than both a massive species (L. phrygia) and a foliose species (M. foliosa). Moreover, colony size influences niche width, with larger colonies of all three species achieving a positive energy balance over a broader range of conditions than small colonies. Comparison of model predictions with field data demonstrated that tissue biomass and reproductive output are significantly and positively correlated with predicted energy acquisition. These results show how interactions between light and flow determine organism performance along environmental gradients on coral reefs. In addition, this study demonstrates the utility of process‐based models for quantifying how physiology influences ecology, and for predicting the ecological consequences of varying environmental conditions.
Ecology arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-2010.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-2010.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV C. Mark Eakin; James T. Kerry; James T. Kerry; Migdonio A. Gonzalez; Joanne Moneghetti; Jorge G. Álvarez-Romero; Scott F. Heron; Terry P. Hughes; Sean R. Connolly; Sean R. Connolly;pmid: 34739821
The frequency, intensity, and spatial scale of climate extremes are changing rapidly due to anthropogenic global warming.1,2 A growing research challenge is to understand how multiple climate-driven disturbances interact with each other over multi-decadal time frames, generating combined effects that cannot be predicted from single events alone.3-5 Here we examine the emergent dynamics of five coral bleaching events along the 2,300 km length of the Great Barrier Reef that affected >98% of the Reef between 1998 and 2020. We show that the bleaching responses of corals to a given level of heat exposure differed in each event and were strongly influenced by contingency and the spatial overlap and strength of interactions between events. Naive regions that escaped bleaching for a decade or longer were the most susceptible to bouts of heat exposure. Conversely, when pairs of successive bleaching episodes were close together (1-3 years apart), the thermal threshold for severe bleaching increased because the earlier event hardened regions of the Great Barrier Reef to further impacts. In the near future, the biological responses to recurrent bleaching events may become stronger as the cumulative geographic footprint expands further, potentially impairing the stock-recruitment relationships among lightly and severely bleached reefs with diverse recent histories. Understanding the emergent properties and collective dynamics of recurrent disturbances will be critical for predicting spatial refuges and cumulative ecological responses, and for managing the longer-term impacts of anthropogenic climate change on ecosystems.
Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.10.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Biology arrow_drop_down Current BiologyArticle . 2021 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cub.2021.10.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu