- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:SAGE Publications Authors: Boubekri, Noureddine; Doudou, Sofiane; Saifia, Dounia; Chadli, Mohammed;This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.
Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:SAGE Publications Authors: Boubekri, Noureddine; Doudou, Sofiane; Saifia, Dounia; Chadli, Mohammed;This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.
Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:SAGE Publications Authors: Boubekri, Noureddine; Doudou, Sofiane; Saifia, Dounia; Chadli, Mohammed;This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.
Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 FrancePublisher:SAGE Publications Authors: Boubekri, Noureddine; Doudou, Sofiane; Saifia, Dounia; Chadli, Mohammed;This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.
Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Transactions of the ... arrow_drop_down Transactions of the Institute of Measurement and ControlArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité d'Évry-Val-d'Essonne: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/01423312211052123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu