- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Finland, SpainPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionHuber, A.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Wiesen, S.; Abreu, P.; Beurskens, M. N.A.; Boboc, A.; Brix, M.; Calabrò, G.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Groth, M.; Guillemaut, C.; Jachmich, S.; Järvinen, A.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; , JET Contributors;handle: 2607/31473 , 2607/5455
Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another. Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l -mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/n GW =0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation. It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to l -mode. The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. EURATOM 633053
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTANuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)idUS. Depósito de Investigación Universidad de SevillaArticle . 2017License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaAaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTANuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)idUS. Depósito de Investigación Universidad de SevillaArticle . 2017License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaAaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type , Conference object 2021Embargo end date: 01 Jan 2020 Netherlands, Spain, Netherlands, NetherlandsPublisher:IOP Publishing Funded by:EC | EUROfusion, EC | EUROfusionEC| EUROfusion ,EC| EUROfusionS. Futatani; A. Cathey; M. Hoelzl; P.T. Lang; G.T.A. Huijsmans; M. Dunne; the JOREK Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team;Abstract Pellet edge localized mode (ELM) triggering is a well-established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices, increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time, after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor is it possible to trigger an ELM crash by pellet injection. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic E × B and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows us to recover the lag time for the first time in simulations and investigate it in detail. A series of nonlinear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail, revealing pronounced differences in the nonlinear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered, enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In the case of high injection velocities leading to deep penetration, the excitation of core modes like the 2/1 neoclassical tearing mode is also observed.
Nuclear Fusion arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-4326/abdfb4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert Nuclear Fusion arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-4326/abdfb4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Finland, SpainPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionHuber, A.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Wiesen, S.; Abreu, P.; Beurskens, M. N.A.; Boboc, A.; Brix, M.; Calabrò, G.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Groth, M.; Guillemaut, C.; Jachmich, S.; Järvinen, A.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; , JET Contributors;handle: 2607/31473 , 2607/5455
Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another. Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l -mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/n GW =0.8–1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation. It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H- to l -mode. The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. EURATOM 633053
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTANuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)idUS. Depósito de Investigación Universidad de SevillaArticle . 2017License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaAaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTANuclear Materials and EnergyArticle . 2017License: CC BY NC NDData sources: BASE (Open Access Aggregator)idUS. Depósito de Investigación Universidad de SevillaArticle . 2017License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaAaltodoc Publication ArchiveArticle . 2017 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2017.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type , Conference object 2021Embargo end date: 01 Jan 2020 Netherlands, Spain, Netherlands, NetherlandsPublisher:IOP Publishing Funded by:EC | EUROfusion, EC | EUROfusionEC| EUROfusion ,EC| EUROfusionS. Futatani; A. Cathey; M. Hoelzl; P.T. Lang; G.T.A. Huijsmans; M. Dunne; the JOREK Team; the ASDEX Upgrade Team; the EUROfusion MST1 Team;Abstract Pellet edge localized mode (ELM) triggering is a well-established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices, increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time, after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor is it possible to trigger an ELM crash by pellet injection. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic E × B and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows us to recover the lag time for the first time in simulations and investigate it in detail. A series of nonlinear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail, revealing pronounced differences in the nonlinear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered, enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In the case of high injection velocities leading to deep penetration, the excitation of core modes like the 2/1 neoclassical tearing mode is also observed.
Nuclear Fusion arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-4326/abdfb4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert Nuclear Fusion arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-4326/abdfb4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu