- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Xiong Yang; Wanlong Cai; Yongpeng Li; Ming Wang; Yanlong Kong; Fenghao Wang; Chaofan Chen;AbstractGroundwater convection is commonly observed in real-world projects, particularly in coastal and groundwater-abundant regions. To accurately evaluate the heat extraction capacity of the deep borehole heat exchanger (DBHE) considering groundwater flow, a conduction–convection coupled numerical model of the DBHE is established by OpenGeoSys (OGS) software. Then, the variation of the DBHE circulation temperature and the heat extraction capacity affected by different groundwater conditions, including Darcy velocity, location of the aquifer, and porosity of the aquifer, are quantitatively analyzed. The results show that the porosity and location of the aquifer have a limited effect on the heat extraction capacity of the DBHE. With the given scenario in this study, when the Darcy velocity reaches more than $$1\times 10^{-7}\,{{\textrm{m}}/{\textrm{s}}}$$ 1 × 10 - 7 m / s , it has a distinguishable effect on the heat extraction capacity of DBHE under the influence of groundwater. In addition, long-term simulations of multiple DBHEs considering the characteristics of the ground pipe network are performed in different directions of groundwater flow. The results indicate that groundwater flow can alleviate cold accumulation around the boreholes, and the thermal plume is pushed much towards the downstream direction. The cross-flow groundwater results in a higher circulation temperature than the parallel flow for the DBHE array. The maximum temperature difference between the two configurations is $${1.98}\,^{\circ }{\textrm{C}}$$ 1.98 ∘ C , which occurs at the end of the 15th operating year based on the given parameters. The results of this study can be used as a guide for project engineers and decision-makers to accurately assess the heat extraction capacity of DBHE and strategize the layout of the DBHE array, taking into account the influence of groundwater flow.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00330-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00330-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Ruifeng Wang; Fenghao Wang; Yuze Xue; Jinghua Jiang; Yuping Zhang; Wanlong Cai; Chaofan Chen;doi: 10.3390/en15093444
To contribute to the goal of carbon neutralization, the closed-loop borehole heat exchanger system is widely applied to use geothermal energy for building cooling and heating. In this work, a new type of medium-shallow borehole heat exchanger (MSBHE) is proposed, which is coaxial type and has a depth range between 200 m to 500 m. To investigate the long-term performance of MSBHE in the area with unbalanced cooling and heating load of buildings and the sustainable load imbalance ratio under different design parameters, a comprehensive numerical model is established. The results show that the drilling depth significantly influences the sustainable load imbalance ratio of MSBHE. As the drilling depth is increased from 200 m to 500 m, the load imbalance ratio of the MSBHE increases from 20.76% to 60.29%. In contrast, the load imbalance ratio is always kept at the same level with different inlet velocities and operation modes. Furthermore, in a 9-MSBHE array system, the heat exchanger located in the middle of the array has the lowest load imbalance ratio of 48.97%, which is 15.98% lower than the borehole in the edge location. This is caused by the significant influence of the shifted-load phenomenon among MSBHEs in an array system. The findings of the work imply that this newly proposed MSBHE can sustain a notable load imbalance ratio, which is particularly applicable to the areas with a strong imbalance of annual building load.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Wanlong Cai; Fenghao Wang; Yuping Zhang; Jinghua Jiang; Qiuwang Wang; Haibing Shao; Olaf Kolditz; Thomas Nagel; Chaofan Chen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Jinghua Jiang; Fenghao Wang; Xiong Yang; Yuping Zhang; Jiewen Deng; Qingpeng Wei; Wanlong Cai; Chaofan Chen;Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Cong Zhou; Yizhen Li; Fenghao Wang; Zeyuan Wang; Qing Xia; Yuping Zhang; Jun Liu; Boyang Liu; Wanlong Cai;doi: 10.3390/en16062676
With the development of the economy and society, energy problems have become a great concern. The heat pump-coupled thermal energy storage (TES) system is a potential form of building heating, which can improve the stability of the grid and promote the consumption of renewable energy. Phase change materials (PCMs) are widely used in the field of building heating, but there are still some problems such as unsatisfactory melting points, low thermal conductivity, phase separation, and supercooling, which limit the application of PCMs in heat pump heating systems. Therefore, it is very important to improve PCMs by a performance improvement method. This work first summarizes the classification, advantages and disadvantages of PCMs, and introduces the connection between PCMs and heat pumps. Then, a detailed summary of PCMs applied in heat pump heating systems is presented, and a comprehensive review of the performance improvement methods for PCMs, which include additives, encapsulation, and eutectic compounds, is discussed. Finally, the existing problems, solutions, and future research directions are proposed. The emphasis of the research is to clarify the influence of PCMs on heat pump performance and the effect of different performance improvement methods on PCMs, and to illustrate the future development direction for PCMs in heat pump heating technologies, including the matching of heat pumps and PCMs, multi-standard decision methods and advanced control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Haijiang Zou; Siyu Guo; Ruifeng Wang; Fenghao Wang; Zhenxing Shen; Wanlong Cai;doi: 10.3390/en16052497
In the process of development and utilization of a large-scale borehole heat exchanger (BHE) array system, the phenomenon of load shifting within BHE array can be observed. In this paper, OpenGeoSys software coupled with TESPy toolkit is used to establish a comprehensive numerical model of BHE system (without depicting the heat pump part), and the behaviors of load shifting between BHEs with different design parameters are studied. The results show that the outlet temperature of single BHE and BHE array is generally rising, and the soil temperature around the BHE has accumulated unbalanced heat. The soil temperature near the BHEs array fluctuates more obviously than the single BHE system, and the distribution is uneven. At the end of the 15th year, the soil temperature near the center BHE increased by 2 °C compared with the initial soil temperature, which was more favorable in winter, but was not conducive to the performance improvement in summer. Further analysis by changing the inter-borehole spacing shows that with the increase of the inter-borehole spacing, the load shifting behaviors are gradually weakened, and the maximum shifted load of the central BHE is linear with the change of the inter-borehole spacing. After changing the layout methods, we observe that the more intensive the layout is, the more load shifting behavior is, and the unbalanced rate of soil temperature distribution around the linear layout is lower than other layouts. With the increase in the number of BHEs, the load shifting behaviors are further enhanced. By analyzing the proportion of shifted load amount relative to the average value, it is found that the system will take a longer time to reach heat balance with the increase of BHEs’ number. A shutdown of part of BHEs for a certain period of time will help to improve the long-term operational efficiency of the large-scale shallow ground source heat pump (GSHP) system.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Olaf Kolditz; Olaf Kolditz; Chaofan Chen; Chaofan Chen; Wanlong Cai; Wanlong Cai; Fenghao Wang; Jiewen Deng; Shuang Chen; Shuang Chen; Jun Liu; Haibing Shao; Haibing Shao;Abstract In the context of reducing carbon emission, Deep Borehole Heat Exchanger (DBHE) array has a large potential in extracting geothermal energy to provide building heating in densely populated urban areas. To investigate the thermal interaction among the DBHE, a comprehensive numerical model has been built with the OpenGeoSys software, and it is validated by monitoring data from a pilot project in Xi’an, China. The long-term simulations manifest that the outlet temperature of the DBHE array has a noticeable draw-down of 4.70 ° C over 20 years in comparison to the single borehole setup. The maximum difference of outlet temperature among individual DBHE can reach up to 0.88 ° C over 20 years, which will lead to a shifted thermal load of 23.35 kW (12.25 % of the designed average value). Based on the predicted subsurface temperature distribution, a non-linear correlation can be established between the drawdown in working fluid temperature and the accumulated amount of extracted heat. The finding of work implies that the thermal interaction among individual DBHE is of significance for the sustainability of the system, and comprehensive numerical modeling should be considered in the designing procedure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Bin Liu; Jiangfeng Wang; Hongyan Li; Jian Liu; Pengtao Wang; Wanlong Cai; Xianpeng Sun; Chaofan Chen;Given the substantial initial investment required by the drilling and implementation of the Deep Borehole Heat Exchanger (DBHE), it becomes imperative to quantitatively evaluate its long-term performance and sustainability. This work introduces a pilot DBHE project in Xi’an, along with the 500-h in-situ monitored data, which is used to validate the 3D numerical model established and simulated in the OpenGeoSys (OGS) software. Based on the validated model, a series of extended scenarios are executed to evaluate the influence of design and operational parameters on the long-term performance and sustainability of the DBHE system. The results show that the drilling depth is the most significant factor that influences long-term performance. On the contrary, pipe diameter and inner pipe thermal conductivity have a very limited impact. A comprehensive evaluation is suggested to determine operational flow rates in real projects while considering the energy consumption by the circulation pump. Moreover, the heat extraction performance and energy analysis of the DBHE coupled with a geothermal heat pump under intermittent operation are also investigated. With a fixed daily heating demand, a longer daily operating time results in lower circulating temperature drops, which is advantageous for the heat pump’s energy efficiency in long-term operation.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Chaofan Chen; Francesco Witte; Reza Taherdangkoo; Wanlong Cai; Shuang Chen; Yanlong Kong; Haibing Shao; Mathias Hofmann; Thomas Nagel;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.125216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.125216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Zeyuan Wang; Fenghao Wang; Mengmeng Bai; Sheng Zhang; Zhentao Xie; Baocheng Han; Yizhen Li; Jun Liu; Wanlong Cai; Yixuan Zhang; Zhenjun Ma;Deep borehole heat exchangers (DBHEs) coupled with heat pump systems present a promising solution for building space heating. However, conventional heating systems have limited demand flexibility and ignored the potential of direct heating using DBHEs. Thus, this study proposed a hybrid DBHE heating system by integrating latent heat thermal energy storage (LHTES) and borehole direct heating (BDH), and evaluated its performance in terms of energy, exergy, economy, and flexibility. This work aimed to achieve a matching operation between the LHTES and the heat pump and quantify the performance improvement potential of the hybrid system. Firstly, a thermodynamic analysis was carried out based on a pilot project, showing that the seasonal performance factor (SPF) of the system can reach 4.3 under the high-temperature heat storage mode, with a 45.5% improvement in exergy efficiency. Based on the field-measured data, a transient model of the hybrid system was developed using TRNSYS and MATLAB. With the established model, the single and interactive impacts of multiple critical parameters on the system performance were explored. Subsequently, a multi-objective optimization was performed using artificial neural networks and a genetic algorithm by considering several scenarios with different geographical locations and electricity tariffs. The optimization results revealed a trade-off between the levelized cost of energy (LCOE) and the flexibility factor, both of which were highly sensitive to the tank volume of the LHTES. The case studies showed that the LCOE of the optimized hybrid system was decreased by up to 8.5%, while the SPF, exergy efficiency, and flexibility factor were improved by up to 20.3%, 3.0%, and 998.7% respectively, in comparison with the conventional system. Compared with the hybrid system without using LHTES, integrating LHTES led to a decrease in LCOE by up to 5.0% and an increase in SPF by up to 3.8%. This study demonstrated the potential of using such hybrid systems for building heating ...
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Xiong Yang; Wanlong Cai; Yongpeng Li; Ming Wang; Yanlong Kong; Fenghao Wang; Chaofan Chen;AbstractGroundwater convection is commonly observed in real-world projects, particularly in coastal and groundwater-abundant regions. To accurately evaluate the heat extraction capacity of the deep borehole heat exchanger (DBHE) considering groundwater flow, a conduction–convection coupled numerical model of the DBHE is established by OpenGeoSys (OGS) software. Then, the variation of the DBHE circulation temperature and the heat extraction capacity affected by different groundwater conditions, including Darcy velocity, location of the aquifer, and porosity of the aquifer, are quantitatively analyzed. The results show that the porosity and location of the aquifer have a limited effect on the heat extraction capacity of the DBHE. With the given scenario in this study, when the Darcy velocity reaches more than $$1\times 10^{-7}\,{{\textrm{m}}/{\textrm{s}}}$$ 1 × 10 - 7 m / s , it has a distinguishable effect on the heat extraction capacity of DBHE under the influence of groundwater. In addition, long-term simulations of multiple DBHEs considering the characteristics of the ground pipe network are performed in different directions of groundwater flow. The results indicate that groundwater flow can alleviate cold accumulation around the boreholes, and the thermal plume is pushed much towards the downstream direction. The cross-flow groundwater results in a higher circulation temperature than the parallel flow for the DBHE array. The maximum temperature difference between the two configurations is $${1.98}\,^{\circ }{\textrm{C}}$$ 1.98 ∘ C , which occurs at the end of the 15th operating year based on the given parameters. The results of this study can be used as a guide for project engineers and decision-makers to accurately assess the heat extraction capacity of DBHE and strategize the layout of the DBHE array, taking into account the influence of groundwater flow.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00330-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40517-024-00330-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Ruifeng Wang; Fenghao Wang; Yuze Xue; Jinghua Jiang; Yuping Zhang; Wanlong Cai; Chaofan Chen;doi: 10.3390/en15093444
To contribute to the goal of carbon neutralization, the closed-loop borehole heat exchanger system is widely applied to use geothermal energy for building cooling and heating. In this work, a new type of medium-shallow borehole heat exchanger (MSBHE) is proposed, which is coaxial type and has a depth range between 200 m to 500 m. To investigate the long-term performance of MSBHE in the area with unbalanced cooling and heating load of buildings and the sustainable load imbalance ratio under different design parameters, a comprehensive numerical model is established. The results show that the drilling depth significantly influences the sustainable load imbalance ratio of MSBHE. As the drilling depth is increased from 200 m to 500 m, the load imbalance ratio of the MSBHE increases from 20.76% to 60.29%. In contrast, the load imbalance ratio is always kept at the same level with different inlet velocities and operation modes. Furthermore, in a 9-MSBHE array system, the heat exchanger located in the middle of the array has the lowest load imbalance ratio of 48.97%, which is 15.98% lower than the borehole in the edge location. This is caused by the significant influence of the shifted-load phenomenon among MSBHEs in an array system. The findings of the work imply that this newly proposed MSBHE can sustain a notable load imbalance ratio, which is particularly applicable to the areas with a strong imbalance of annual building load.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/9/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15093444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Wanlong Cai; Fenghao Wang; Yuping Zhang; Jinghua Jiang; Qiuwang Wang; Haibing Shao; Olaf Kolditz; Thomas Nagel; Chaofan Chen;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.122171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Jinghua Jiang; Fenghao Wang; Xiong Yang; Yuping Zhang; Jiewen Deng; Qingpeng Wei; Wanlong Cai; Chaofan Chen;Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.105122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Cong Zhou; Yizhen Li; Fenghao Wang; Zeyuan Wang; Qing Xia; Yuping Zhang; Jun Liu; Boyang Liu; Wanlong Cai;doi: 10.3390/en16062676
With the development of the economy and society, energy problems have become a great concern. The heat pump-coupled thermal energy storage (TES) system is a potential form of building heating, which can improve the stability of the grid and promote the consumption of renewable energy. Phase change materials (PCMs) are widely used in the field of building heating, but there are still some problems such as unsatisfactory melting points, low thermal conductivity, phase separation, and supercooling, which limit the application of PCMs in heat pump heating systems. Therefore, it is very important to improve PCMs by a performance improvement method. This work first summarizes the classification, advantages and disadvantages of PCMs, and introduces the connection between PCMs and heat pumps. Then, a detailed summary of PCMs applied in heat pump heating systems is presented, and a comprehensive review of the performance improvement methods for PCMs, which include additives, encapsulation, and eutectic compounds, is discussed. Finally, the existing problems, solutions, and future research directions are proposed. The emphasis of the research is to clarify the influence of PCMs on heat pump performance and the effect of different performance improvement methods on PCMs, and to illustrate the future development direction for PCMs in heat pump heating technologies, including the matching of heat pumps and PCMs, multi-standard decision methods and advanced control strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Haijiang Zou; Siyu Guo; Ruifeng Wang; Fenghao Wang; Zhenxing Shen; Wanlong Cai;doi: 10.3390/en16052497
In the process of development and utilization of a large-scale borehole heat exchanger (BHE) array system, the phenomenon of load shifting within BHE array can be observed. In this paper, OpenGeoSys software coupled with TESPy toolkit is used to establish a comprehensive numerical model of BHE system (without depicting the heat pump part), and the behaviors of load shifting between BHEs with different design parameters are studied. The results show that the outlet temperature of single BHE and BHE array is generally rising, and the soil temperature around the BHE has accumulated unbalanced heat. The soil temperature near the BHEs array fluctuates more obviously than the single BHE system, and the distribution is uneven. At the end of the 15th year, the soil temperature near the center BHE increased by 2 °C compared with the initial soil temperature, which was more favorable in winter, but was not conducive to the performance improvement in summer. Further analysis by changing the inter-borehole spacing shows that with the increase of the inter-borehole spacing, the load shifting behaviors are gradually weakened, and the maximum shifted load of the central BHE is linear with the change of the inter-borehole spacing. After changing the layout methods, we observe that the more intensive the layout is, the more load shifting behavior is, and the unbalanced rate of soil temperature distribution around the linear layout is lower than other layouts. With the increase in the number of BHEs, the load shifting behaviors are further enhanced. By analyzing the proportion of shifted load amount relative to the average value, it is found that the system will take a longer time to reach heat balance with the increase of BHEs’ number. A shutdown of part of BHEs for a certain period of time will help to improve the long-term operational efficiency of the large-scale shallow ground source heat pump (GSHP) system.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2497/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Olaf Kolditz; Olaf Kolditz; Chaofan Chen; Chaofan Chen; Wanlong Cai; Wanlong Cai; Fenghao Wang; Jiewen Deng; Shuang Chen; Shuang Chen; Jun Liu; Haibing Shao; Haibing Shao;Abstract In the context of reducing carbon emission, Deep Borehole Heat Exchanger (DBHE) array has a large potential in extracting geothermal energy to provide building heating in densely populated urban areas. To investigate the thermal interaction among the DBHE, a comprehensive numerical model has been built with the OpenGeoSys software, and it is validated by monitoring data from a pilot project in Xi’an, China. The long-term simulations manifest that the outlet temperature of the DBHE array has a noticeable draw-down of 4.70 ° C over 20 years in comparison to the single borehole setup. The maximum difference of outlet temperature among individual DBHE can reach up to 0.88 ° C over 20 years, which will lead to a shifted thermal load of 23.35 kW (12.25 % of the designed average value). Based on the predicted subsurface temperature distribution, a non-linear correlation can be established between the drawdown in working fluid temperature and the accumulated amount of extracted heat. The finding of work implies that the thermal interaction among individual DBHE is of significance for the sustainability of the system, and comprehensive numerical modeling should be considered in the designing procedure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Bin Liu; Jiangfeng Wang; Hongyan Li; Jian Liu; Pengtao Wang; Wanlong Cai; Xianpeng Sun; Chaofan Chen;Given the substantial initial investment required by the drilling and implementation of the Deep Borehole Heat Exchanger (DBHE), it becomes imperative to quantitatively evaluate its long-term performance and sustainability. This work introduces a pilot DBHE project in Xi’an, along with the 500-h in-situ monitored data, which is used to validate the 3D numerical model established and simulated in the OpenGeoSys (OGS) software. Based on the validated model, a series of extended scenarios are executed to evaluate the influence of design and operational parameters on the long-term performance and sustainability of the DBHE system. The results show that the drilling depth is the most significant factor that influences long-term performance. On the contrary, pipe diameter and inner pipe thermal conductivity have a very limited impact. A comprehensive evaluation is suggested to determine operational flow rates in real projects while considering the energy consumption by the circulation pump. Moreover, the heat extraction performance and energy analysis of the DBHE coupled with a geothermal heat pump under intermittent operation are also investigated. With a fixed daily heating demand, a longer daily operating time results in lower circulating temperature drops, which is advantageous for the heat pump’s energy efficiency in long-term operation.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Elsevier BV Chaofan Chen; Francesco Witte; Reza Taherdangkoo; Wanlong Cai; Shuang Chen; Yanlong Kong; Haibing Shao; Mathias Hofmann; Thomas Nagel;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.125216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.125216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Zeyuan Wang; Fenghao Wang; Mengmeng Bai; Sheng Zhang; Zhentao Xie; Baocheng Han; Yizhen Li; Jun Liu; Wanlong Cai; Yixuan Zhang; Zhenjun Ma;Deep borehole heat exchangers (DBHEs) coupled with heat pump systems present a promising solution for building space heating. However, conventional heating systems have limited demand flexibility and ignored the potential of direct heating using DBHEs. Thus, this study proposed a hybrid DBHE heating system by integrating latent heat thermal energy storage (LHTES) and borehole direct heating (BDH), and evaluated its performance in terms of energy, exergy, economy, and flexibility. This work aimed to achieve a matching operation between the LHTES and the heat pump and quantify the performance improvement potential of the hybrid system. Firstly, a thermodynamic analysis was carried out based on a pilot project, showing that the seasonal performance factor (SPF) of the system can reach 4.3 under the high-temperature heat storage mode, with a 45.5% improvement in exergy efficiency. Based on the field-measured data, a transient model of the hybrid system was developed using TRNSYS and MATLAB. With the established model, the single and interactive impacts of multiple critical parameters on the system performance were explored. Subsequently, a multi-objective optimization was performed using artificial neural networks and a genetic algorithm by considering several scenarios with different geographical locations and electricity tariffs. The optimization results revealed a trade-off between the levelized cost of energy (LCOE) and the flexibility factor, both of which were highly sensitive to the tank volume of the LHTES. The case studies showed that the LCOE of the optimized hybrid system was decreased by up to 8.5%, while the SPF, exergy efficiency, and flexibility factor were improved by up to 20.3%, 3.0%, and 998.7% respectively, in comparison with the conventional system. Compared with the hybrid system without using LHTES, integrating LHTES led to a decrease in LCOE by up to 5.0% and an increase in SPF by up to 3.8%. This study demonstrated the potential of using such hybrid systems for building heating ...
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu