- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Alexander Lindsay; Gavin Ridley; Andrei Rykhlevskii; Kathryn Huff;Abstract Moltres is a new physics application for modeling coupled physics in fluid-fuelled, molten salt reactors. This paper describes its neutronics model, thermal hydraulics model, and their coupling in the MOOSE framework. Neutron and precursor equations are implemented using an action system that allows use of an arbitrary number of groups with no change in the input card. Results for many-channel configurations in 2D-axisymmetric and 3D coordinates are presented and compared against other coupled models as well as the Molten Salt Reactor Experiment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023Publisher:Informa UK Limited Authors: Gavin Ridley; Benoit Forget; Timothy Burke;arXiv: 2303.08196
A new method for directly sampling the neutron resonance upscattering effect is presented. Alternatives have relied on inefficient rejection sampling techniques or large tabular storage of relative velocities. None of these approaches, which require pointwise energy data, are particularly well suited to the windowed multipole cross section representation. The new method called multipole analytic resonance scattering (MARS) overcomes these limitations by inverse transform sampling from the target relative velocity distribution where the cross section is expressed in the multipole formalism. The closed form relative speed distribution contains a novel special function we deem the incomplete Faddeeva function: $$ w(z, x) = \frac{i}π \int_{-\infty}^x \frac{e^{-t^2} dt}{z-t}. $$ We present the first results on its efficient numerical evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00295639.2023.2204810&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00295639.2023.2204810&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gavin Ridley; Ondrej Chvala;Abstract Liquid fuel molten salt reactors allow reactivity control by material addition. This paper presents a method to adjust material flows in a molten salt reactor to keep the core critical, and to maintain desired reduction-oxidation potential in the core salt melt. The method is aimed at low-enriched uranium fueled thermal systems. It is developed as a Python library and uses Serpent2 Monte-Carlo transport and depletion code. A toy 300 MW(th) reactor with a FLiBe carrier salt is employed to demonstrate the performance of the method over 10 full power years. Results of the calculation are presented, including material flows, conversion ratio, effective delayed neutron fraction, and expected limits on trifluoride concentrations and graphite lifetime are investigated. This method lays a foundation for future studies including fuel cycle performance of molten salt reactors and dynamic behavior of the core during depletion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Alexander Lindsay; Gavin Ridley; Andrei Rykhlevskii; Kathryn Huff;Abstract Moltres is a new physics application for modeling coupled physics in fluid-fuelled, molten salt reactors. This paper describes its neutronics model, thermal hydraulics model, and their coupling in the MOOSE framework. Neutron and precursor equations are implemented using an action system that allows use of an arbitrary number of groups with no change in the input card. Results for many-channel configurations in 2D-axisymmetric and 3D coordinates are presented and compared against other coupled models as well as the Molten Salt Reactor Experiment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.12.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023Publisher:Informa UK Limited Authors: Gavin Ridley; Benoit Forget; Timothy Burke;arXiv: 2303.08196
A new method for directly sampling the neutron resonance upscattering effect is presented. Alternatives have relied on inefficient rejection sampling techniques or large tabular storage of relative velocities. None of these approaches, which require pointwise energy data, are particularly well suited to the windowed multipole cross section representation. The new method called multipole analytic resonance scattering (MARS) overcomes these limitations by inverse transform sampling from the target relative velocity distribution where the cross section is expressed in the multipole formalism. The closed form relative speed distribution contains a novel special function we deem the incomplete Faddeeva function: $$ w(z, x) = \frac{i}π \int_{-\infty}^x \frac{e^{-t^2} dt}{z-t}. $$ We present the first results on its efficient numerical evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00295639.2023.2204810&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00295639.2023.2204810&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Gavin Ridley; Ondrej Chvala;Abstract Liquid fuel molten salt reactors allow reactivity control by material addition. This paper presents a method to adjust material flows in a molten salt reactor to keep the core critical, and to maintain desired reduction-oxidation potential in the core salt melt. The method is aimed at low-enriched uranium fueled thermal systems. It is developed as a Python library and uses Serpent2 Monte-Carlo transport and depletion code. A toy 300 MW(th) reactor with a FLiBe carrier salt is employed to demonstrate the performance of the method over 10 full power years. Results of the calculation are presented, including material flows, conversion ratio, effective delayed neutron fraction, and expected limits on trifluoride concentrations and graphite lifetime are investigated. This method lays a foundation for future studies including fuel cycle performance of molten salt reactors and dynamic behavior of the core during depletion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2017.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu