- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 GermanyPublisher:ASME International Authors: Schenk, Heiko; Feldhoff, Jan Fabian; Hirsch, Tobias;doi: 10.1115/1.4006268
In solar thermal power plants, at least the solar part undergoes a daily start-up process. Since duration and energy consumption of the start-up depend on irradiance and temperature boundary conditions, differences occur between the individual days and especially between the seasons. For a good representation in annual electricity yield calculations, the start-up process should be modeled on a daily basis. This paper presents a closed approach for the calculation of start-up and cool-down in solar thermal power plants especially designed for annual calculations. It is demonstrated by one example how the required parameters can be obtained and how the methodology is applied. A sensitivity analysis reveals the large impact of start-up consumption on the annual yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4006268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4006268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Mirko Meyer-Grünefeldt; Jan Fabian Feldhoff; Lothar Keller; Loreto Valenzuela; Martin Eickhoff; Javier Leon Alonso; Tobias Hirsch; Johannes Pernpeintner;AbstractOne option to improve the cost-effectiveness and environmental friendliness of parabolic trough power plants is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG). First commercial stand-alone plants using DSG are now in operation in Thailand (parabolic trough with superheating by Solarlite) and in Spain (linear Fresnel for saturated steam by Novatec Solar). To further bring down the costs of a DSG solar field, the research project DUKE aims at the development and demonstration of a commercially applicable once-through mode design.The demonstration will be done at the DISS test facility at the Plataforma Solar de Almería (PSA), Spain, by the DLR-Institute of Solar Research in close collaboration with the Spanish CIEMAT. For this purpose, the DISS test facility was upgraded to a length of 1000 m by three new collectors. It now has commercial-scale size and, in addition, is able to stand 500°C and 110bar at the outlet [1].The construction and commissioning of the new plant has been completed (see Fig. 1) and the first test period has started in May 2013. The paper examines two aspects: illustrate the design changes of the solar field and show the performance of the two new main components: the DSG receivers as well as the new collectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Conference object 2011 GermanyPublisher:Elsevier BV Birnbaum, Jürgen; Feldhoff, Jan Fabian; Fichtner, Markus; Hirsch, Tobias; Jöcker, Markus; Pitz-Paal, Robert; Zimmermann, Gerhard;Abstract Direct steam generation (DSG) is one alternative to the current oil-based parabolic trough solar thermal power plants. Within the German research project ITES, the dynamic behavior of a DSG collector field and the interactions with the conventional power block are assessed in detail. A transient solar field model developed by DLR is used to simulate the steam temperature behavior. Artificial irradiance disturbances as well as real irradiance data are used as input to the system. The resulting main steam temperature gradients are then analyzed by Siemens considering the standards for steam turbines. This paper presents the transient simulation results of the steam temperature as well as the corresponding results of the steam turbine analysis. It is found that the occurring temperature gradients are challenging for a safe turbine operation, if a conservative control system is used. Therefore, the use of an additional thermal inertia to stabilize the steam temperature is suggested. Its impact is also analyzed and discussed in this paper.
Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2010.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2010.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2014 GermanyPublisher:Elsevier BV Eck, M.; Hirsch, T.; Feldhoff, J.F.; Kretschmann, D.; Dersch, J.; Gavilan Morales, A.; Gonzalez-Martinez, L.; Bachelier, C.; Platzer, W.; Riffelmann, K.-J.; Wagner, M.;AbstractYield analysis is a crucial task during project deployment of solar thermal power plants. Currently, many different modeling approaches and computer tools for yield analysis are used. Within the SolarPACES project guiSmo, aiming at the development of guidelines for the annual yield prediction of solar thermal power plants, relevant effects for the steady-state modeling of plant sub-systems have been identified [1].The target of the ongoing project phase is the development of general definitions for all relevant effects. Furthermore, suitable modeling approaches have to be identified and described unambiguously. For every effect, the impact on the predicted electricity yield is estimated in order to assess the significance of the considered effect. Since the most significant effects have to be considered in a subsequent uncertainty analysis, reasonable model and parameter uncertainties have to be defined, too. Finally, default model parameter for state-of-the-art components or subsystems will be edited.Beside the present status of the project, this paper presents investigations on the effects of the optical losses of the sub-system collector field on the annual yield. These effects are namely the peak optical efficiency, incidence angle modifier (IAM), shading and end losses. For each effect, a precise definition is presented and relevant modeling approaches are identified and their pros and cons are discussed. To investigate the influence of these effects, a reference solar thermal power plant with parabolic troughs is defined. The annual yield is simulated for this reference system investigating the identified modeling approaches and assessing their significance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2011 GermanyFeldhoff, Jan Fabian; Schmitz, Kai; Eck, Markus; Schnatbaum-Laumann, Lars; Laing, Doerte; Ortiz-Vives, Francisco; Schulte-Fischedick, Jan;In addition to the commercial parabolic trough power plants using synthetic oil, the direct steam generation (DSG) is one option for future trough plants. Besides its higher efficiency and lower environmental impact, the overall levelized electricity costs (LEC) will be decisive for the future application of DSG. This paper focuses on the thermodynamic and economic comparison of synthetic oil and DSG plants including the aspect of thermal energy storage – which gains more and more in importance by industry and investors.
DLR publication serv... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::02d28344249f23e501bbe7778341b7ad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert DLR publication serv... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::02d28344249f23e501bbe7778341b7ad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2012 GermanyPublisher:American Society of Mechanical Engineers Eck, Markus; Feldhoff, Jan Fabian; Kretschmann, David; Wittmann, Michael; Schenk, Heiko;doi: 10.1115/es2012-91055
Technical and economical evaluation of solar thermal power plants constantly gains more importance for industry and research. The reliability of the results highly depends on the assumptions made for the applied parameters. Reducing a power plant system to one single, deterministic number for evaluation, like the levelized cost of electricity (LCOE), might end in misleading results. Probabilistic approaches can help to better evaluate systems [1] and scenarios [2]. While industry looks for safety in investment and profitability, research is predominantly interested in the evaluation of concepts and the identification of promising new approaches. Especially for research, dealing with higher and hardly quantifiable uncertainties, it is desirable to get a detailed view of the system and its main influences. However, to get there, also a good knowledge on the stochastic interrelations and its interpretation is required. Therefore, this paper mainly assesses the influences of basic stochastic assumptions and suggests a methodology to consider suitable stochastic input, especially for parameters of systems still under research. As examples, the comparison between a parabolic trough plant with synthetic oil and direct steam generation is used.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2012-91055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2012-91055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2009 GermanyPublisher:ASME International Authors: Feldhoff, Jan Fabian; Benitez, Daniel; Eck, Markus; Riffelmann, Klaus-Jürgen;The direct steam generation (DSG) in parabolic trough collectors is a promising option to improve the mature parabolic trough solar thermal power plant technology of the solar energy generating systems (SEGS) in California. According to previous studies [Langenkamp, 1998, “Revised LEC Projections and Discussion of Different DSG Benefits,” Technical Report No. DISS-SC-QA-02, Almeria, Spain; Price, et al., 2002, “Advances in Parabolic Trough Solar Power Technology,” ASME J. Sol. Energy Eng., 124(2), pp. 109–125; Zarza, E., 2002, “DISS Phase II Final Report,” Technical Report EU Contract No. JOR3-CT98-0277, Almeria, Spain], the cost reduction in the DSG process compared with the SEGS technology is expected to be 8–25%. All these studies were more or less preliminary since they lacked detailed information on the design of collector fields, absorber tubes required for steam temperatures higher than 400°C, and power blocks adapted to the specific needs of the direct steam generation. Power blocks and collector fields were designed for four different capacities (5 MWel, 10 MWel, 50 MWel, and 100 MWel) and different live steam parameters. The live steam temperature was varied between saturation temperature and 500°C and live steam pressures of 40 bars, 64 bars, and 100 bars were investigated. To assess the different cases, detailed yield analyses of the overall system were performed using hourly data for the direct normal irradiation and the ambient temperature for typical years. Based on these results, the levelized costs of electricity were determined for all cases and compared with a reference system using synthetic oil as heat transfer fluid. This paper focuses on two main project findings. First, the 50 MWel DSG system parameter comparisons are presented. Second, the detailed comparison between a DSG and a SEGS-like 100 MWel system is given. The main result of the investigation is that the benefit of the DSG process depends on the project site and can reach an 11% reduction in the levelized electricity cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4001672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4001672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 2011 GermanyPublisher:ASMEDC Feldhoff, Jan Fabian; Schmitz, Kai; Eck, Markus; Schnatbaum-Laumann, Lars; Laing, Doerte; Ortiz-Vives, Francisco; Schulte-Fischedick, Jan;Parabolic trough power plants are currently the most commercially applied systems for CSP power generation. To improve their cost-effectiveness, one focus of industry and research is the development of processes with other heat transfer fluids than the currently used synthetic oil. One option is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG). Several previous studies promoted the economic potential of DSG technology [1–3]. Analyses’ results showed that live steam parameters of up to 500°C and 120 bars are most promising and could lead to a reduction of the levelized electricity cost (LEC) of about 11% [4]. However, all of these studies only considered plants without thermal energy storage (TES). Therefore, a system analysis including integrated TES was performed by Flagsol GmbH and DLR together with Solar Millennium AG, Schott CSP GmbH and Senior Bergho¨fer GmbH, all Germany. Two types of plants are analyzed and compared in detail: a power plant with synthetic oil and a DSG power plant. The design of the synthetic oil plant is very similar to the Spanish Andasol plants [5] and includes a molten salt two-tank storage system. The DSG plant has main steam parameters of 500 °C and 112 bars and uses phase change material (PCM) for the latent and molten salt for the sensible part of the TES system. To enable comparability, both plants share the same gross electric turbine capacity of 100 MWel, the same TES capacity of nine hours of full load equivalent and the same solar multiple of the collector field of about two. This paper describes and compares both plants’ design, performance and investment. Based on these results, the LEC are calculated and the DSG plant’s potential is evaluated. One key finding is that with currently proposed DSG storage costs, the LEC of a DSG plant could be higher than those of a synthetic oil plant. When considering a plant without TES on the other hand, the DSG system could reduce the LEC. This underlines the large influence of TES and the still needed effort in the development of a commercial storage system for DSG.
Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2011-54345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 121 citations 121 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2011-54345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:Elsevier BV Willwerth, Lisa; Feldhoff, Jan Fabian; Krüger, Dirk; Keller, Lothar; Eickhoff, Martin; Krüger, Joachim; Pandian, Juvaraj; Tiedemann, Jörg; Succo, Manuel; Khenissi, Abdallah;Abstract TSE1 is the first solar thermal power plant operating in Southeast Asia. It was planned by Solarlite GmbH with support of Tiede- & Niemann GmbH, both German based. It is the first power plant with direct steam generation (DSG) concept and superheating in parabolic troughs. The solar field has a nominal power of 19 MWth driving a 5 MWel turbine by superheated steam at 30 bar and 330 °C. During 2010/2011 Solarlite built the solar field, while the later owner and operator Thai Solar Energy (TSE) from Bangkok built the power block, in Kanchanaburi, Thailand. TSE1 is being operated by TSE since January 2012 (Kruger et al., 2012). This publication is based on a study within the KanDis project, funded by the German Federal Ministry for Economic Affairs and Energy, in which an extensive database of records of almost 500 sensors installed in the power plant (solar field and power block) has been investigated. The data have been provided by Solarlite with a time resolution of about 1 min. Within the KanDis project, a stable operation could be demonstrated (Khenissi et al., 2015; Kruger et al., 2016). Even under the fluctuating irradiance conditions in the rainy season of Thailand, the turbine could be operated well and generate electricity. Evaluation of the operation data has helped to learn more about DSG behaviour. The TSE1 layout and the implemented control strategies were evaluated and strategies for improvement of TSE1 are suggested within this paper. From the experiences with the TSE1 power plant, conclusions could be drawn to improve the layout and control of future DSG plants.
Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.06.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.06.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2015 GermanyPublisher:Elsevier BV Authors: Feldhoff, Jan Fabian; Hirsch, Tobias; Pitz-Paal, Robert; Valenzuela, Loreto;AbstractA transient model is the basis for understanding the characteristics of dynamic systems. It must always be a tradeoff between (modeling and computational) effort and the desired output. Thus, it is necessary for complex systems to develop special models adapted to the purpose. This has been performed for the case of direct steam generation (DSG) in parabolic trough or linear Fresnel solar fields, in which there is a long section of two-phase flow. In the once-through mode (OTM), feed water from the power block is directed to the inlet of a loop. The water is then preheated, completely evaporated and superheated along the loop. This paper presents two different types of transient models for such systems.A discretized finite element model is used for detailed system characteristics and understanding. A second moving boundary model is developed which includes the combination of lumped parameters with distributed information. This fast model can especially be used for control studies and model based predictive controllers. Both models are compared against experimental data and differences regarding various system characteristics are shown. Further models like linear transfer functions in the time-domain are mentioned and an overall overview on transient DSG models is provided.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 GermanyPublisher:ASME International Authors: Schenk, Heiko; Feldhoff, Jan Fabian; Hirsch, Tobias;doi: 10.1115/1.4006268
In solar thermal power plants, at least the solar part undergoes a daily start-up process. Since duration and energy consumption of the start-up depend on irradiance and temperature boundary conditions, differences occur between the individual days and especially between the seasons. For a good representation in annual electricity yield calculations, the start-up process should be modeled on a daily basis. This paper presents a closed approach for the calculation of start-up and cool-down in solar thermal power plants especially designed for annual calculations. It is demonstrated by one example how the required parameters can be obtained and how the methodology is applied. A sensitivity analysis reveals the large impact of start-up consumption on the annual yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4006268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4006268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Mirko Meyer-Grünefeldt; Jan Fabian Feldhoff; Lothar Keller; Loreto Valenzuela; Martin Eickhoff; Javier Leon Alonso; Tobias Hirsch; Johannes Pernpeintner;AbstractOne option to improve the cost-effectiveness and environmental friendliness of parabolic trough power plants is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG). First commercial stand-alone plants using DSG are now in operation in Thailand (parabolic trough with superheating by Solarlite) and in Spain (linear Fresnel for saturated steam by Novatec Solar). To further bring down the costs of a DSG solar field, the research project DUKE aims at the development and demonstration of a commercially applicable once-through mode design.The demonstration will be done at the DISS test facility at the Plataforma Solar de Almería (PSA), Spain, by the DLR-Institute of Solar Research in close collaboration with the Spanish CIEMAT. For this purpose, the DISS test facility was upgraded to a length of 1000 m by three new collectors. It now has commercial-scale size and, in addition, is able to stand 500°C and 110bar at the outlet [1].The construction and commissioning of the new plant has been completed (see Fig. 1) and the first test period has started in May 2013. The paper examines two aspects: illustrate the design changes of the solar field and show the performance of the two new main components: the DSG receivers as well as the new collectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Conference object 2011 GermanyPublisher:Elsevier BV Birnbaum, Jürgen; Feldhoff, Jan Fabian; Fichtner, Markus; Hirsch, Tobias; Jöcker, Markus; Pitz-Paal, Robert; Zimmermann, Gerhard;Abstract Direct steam generation (DSG) is one alternative to the current oil-based parabolic trough solar thermal power plants. Within the German research project ITES, the dynamic behavior of a DSG collector field and the interactions with the conventional power block are assessed in detail. A transient solar field model developed by DLR is used to simulate the steam temperature behavior. Artificial irradiance disturbances as well as real irradiance data are used as input to the system. The resulting main steam temperature gradients are then analyzed by Siemens considering the standards for steam turbines. This paper presents the transient simulation results of the steam temperature as well as the corresponding results of the steam turbine analysis. It is found that the occurring temperature gradients are challenging for a safe turbine operation, if a conservative control system is used. Therefore, the use of an additional thermal inertia to stabilize the steam temperature is suggested. Its impact is also analyzed and discussed in this paper.
Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2010.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2010.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2014 GermanyPublisher:Elsevier BV Eck, M.; Hirsch, T.; Feldhoff, J.F.; Kretschmann, D.; Dersch, J.; Gavilan Morales, A.; Gonzalez-Martinez, L.; Bachelier, C.; Platzer, W.; Riffelmann, K.-J.; Wagner, M.;AbstractYield analysis is a crucial task during project deployment of solar thermal power plants. Currently, many different modeling approaches and computer tools for yield analysis are used. Within the SolarPACES project guiSmo, aiming at the development of guidelines for the annual yield prediction of solar thermal power plants, relevant effects for the steady-state modeling of plant sub-systems have been identified [1].The target of the ongoing project phase is the development of general definitions for all relevant effects. Furthermore, suitable modeling approaches have to be identified and described unambiguously. For every effect, the impact on the predicted electricity yield is estimated in order to assess the significance of the considered effect. Since the most significant effects have to be considered in a subsequent uncertainty analysis, reasonable model and parameter uncertainties have to be defined, too. Finally, default model parameter for state-of-the-art components or subsystems will be edited.Beside the present status of the project, this paper presents investigations on the effects of the optical losses of the sub-system collector field on the annual yield. These effects are namely the peak optical efficiency, incidence angle modifier (IAM), shading and end losses. For each effect, a precise definition is presented and relevant modeling approaches are identified and their pros and cons are discussed. To investigate the influence of these effects, a reference solar thermal power plant with parabolic troughs is defined. The annual yield is simulated for this reference system investigating the identified modeling approaches and assessing their significance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2011 GermanyFeldhoff, Jan Fabian; Schmitz, Kai; Eck, Markus; Schnatbaum-Laumann, Lars; Laing, Doerte; Ortiz-Vives, Francisco; Schulte-Fischedick, Jan;In addition to the commercial parabolic trough power plants using synthetic oil, the direct steam generation (DSG) is one option for future trough plants. Besides its higher efficiency and lower environmental impact, the overall levelized electricity costs (LEC) will be decisive for the future application of DSG. This paper focuses on the thermodynamic and economic comparison of synthetic oil and DSG plants including the aspect of thermal energy storage – which gains more and more in importance by industry and investors.
DLR publication serv... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::02d28344249f23e501bbe7778341b7ad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert DLR publication serv... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1640::02d28344249f23e501bbe7778341b7ad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2012 GermanyPublisher:American Society of Mechanical Engineers Eck, Markus; Feldhoff, Jan Fabian; Kretschmann, David; Wittmann, Michael; Schenk, Heiko;doi: 10.1115/es2012-91055
Technical and economical evaluation of solar thermal power plants constantly gains more importance for industry and research. The reliability of the results highly depends on the assumptions made for the applied parameters. Reducing a power plant system to one single, deterministic number for evaluation, like the levelized cost of electricity (LCOE), might end in misleading results. Probabilistic approaches can help to better evaluate systems [1] and scenarios [2]. While industry looks for safety in investment and profitability, research is predominantly interested in the evaluation of concepts and the identification of promising new approaches. Especially for research, dealing with higher and hardly quantifiable uncertainties, it is desirable to get a detailed view of the system and its main influences. However, to get there, also a good knowledge on the stochastic interrelations and its interpretation is required. Therefore, this paper mainly assesses the influences of basic stochastic assumptions and suggests a methodology to consider suitable stochastic input, especially for parameters of systems still under research. As examples, the comparison between a parabolic trough plant with synthetic oil and direct steam generation is used.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2012-91055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2012-91055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2009 GermanyPublisher:ASME International Authors: Feldhoff, Jan Fabian; Benitez, Daniel; Eck, Markus; Riffelmann, Klaus-Jürgen;The direct steam generation (DSG) in parabolic trough collectors is a promising option to improve the mature parabolic trough solar thermal power plant technology of the solar energy generating systems (SEGS) in California. According to previous studies [Langenkamp, 1998, “Revised LEC Projections and Discussion of Different DSG Benefits,” Technical Report No. DISS-SC-QA-02, Almeria, Spain; Price, et al., 2002, “Advances in Parabolic Trough Solar Power Technology,” ASME J. Sol. Energy Eng., 124(2), pp. 109–125; Zarza, E., 2002, “DISS Phase II Final Report,” Technical Report EU Contract No. JOR3-CT98-0277, Almeria, Spain], the cost reduction in the DSG process compared with the SEGS technology is expected to be 8–25%. All these studies were more or less preliminary since they lacked detailed information on the design of collector fields, absorber tubes required for steam temperatures higher than 400°C, and power blocks adapted to the specific needs of the direct steam generation. Power blocks and collector fields were designed for four different capacities (5 MWel, 10 MWel, 50 MWel, and 100 MWel) and different live steam parameters. The live steam temperature was varied between saturation temperature and 500°C and live steam pressures of 40 bars, 64 bars, and 100 bars were investigated. To assess the different cases, detailed yield analyses of the overall system were performed using hourly data for the direct normal irradiation and the ambient temperature for typical years. Based on these results, the levelized costs of electricity were determined for all cases and compared with a reference system using synthetic oil as heat transfer fluid. This paper focuses on two main project findings. First, the 50 MWel DSG system parameter comparisons are presented. Second, the detailed comparison between a DSG and a SEGS-like 100 MWel system is given. The main result of the investigation is that the benefit of the DSG process depends on the project site and can reach an 11% reduction in the levelized electricity cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4001672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4001672&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 2011 GermanyPublisher:ASMEDC Feldhoff, Jan Fabian; Schmitz, Kai; Eck, Markus; Schnatbaum-Laumann, Lars; Laing, Doerte; Ortiz-Vives, Francisco; Schulte-Fischedick, Jan;Parabolic trough power plants are currently the most commercially applied systems for CSP power generation. To improve their cost-effectiveness, one focus of industry and research is the development of processes with other heat transfer fluids than the currently used synthetic oil. One option is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG). Several previous studies promoted the economic potential of DSG technology [1–3]. Analyses’ results showed that live steam parameters of up to 500°C and 120 bars are most promising and could lead to a reduction of the levelized electricity cost (LEC) of about 11% [4]. However, all of these studies only considered plants without thermal energy storage (TES). Therefore, a system analysis including integrated TES was performed by Flagsol GmbH and DLR together with Solar Millennium AG, Schott CSP GmbH and Senior Bergho¨fer GmbH, all Germany. Two types of plants are analyzed and compared in detail: a power plant with synthetic oil and a DSG power plant. The design of the synthetic oil plant is very similar to the Spanish Andasol plants [5] and includes a molten salt two-tank storage system. The DSG plant has main steam parameters of 500 °C and 112 bars and uses phase change material (PCM) for the latent and molten salt for the sensible part of the TES system. To enable comparability, both plants share the same gross electric turbine capacity of 100 MWel, the same TES capacity of nine hours of full load equivalent and the same solar multiple of the collector field of about two. This paper describes and compares both plants’ design, performance and investment. Based on these results, the LEC are calculated and the DSG plant’s potential is evaluated. One key finding is that with currently proposed DSG storage costs, the LEC of a DSG plant could be higher than those of a synthetic oil plant. When considering a plant without TES on the other hand, the DSG system could reduce the LEC. This underlines the large influence of TES and the still needed effort in the development of a commercial storage system for DSG.
Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2011-54345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 121 citations 121 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/es2011-54345&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:Elsevier BV Willwerth, Lisa; Feldhoff, Jan Fabian; Krüger, Dirk; Keller, Lothar; Eickhoff, Martin; Krüger, Joachim; Pandian, Juvaraj; Tiedemann, Jörg; Succo, Manuel; Khenissi, Abdallah;Abstract TSE1 is the first solar thermal power plant operating in Southeast Asia. It was planned by Solarlite GmbH with support of Tiede- & Niemann GmbH, both German based. It is the first power plant with direct steam generation (DSG) concept and superheating in parabolic troughs. The solar field has a nominal power of 19 MWth driving a 5 MWel turbine by superheated steam at 30 bar and 330 °C. During 2010/2011 Solarlite built the solar field, while the later owner and operator Thai Solar Energy (TSE) from Bangkok built the power block, in Kanchanaburi, Thailand. TSE1 is being operated by TSE since January 2012 (Kruger et al., 2012). This publication is based on a study within the KanDis project, funded by the German Federal Ministry for Economic Affairs and Energy, in which an extensive database of records of almost 500 sensors installed in the power plant (solar field and power block) has been investigated. The data have been provided by Solarlite with a time resolution of about 1 min. Within the KanDis project, a stable operation could be demonstrated (Khenissi et al., 2015; Kruger et al., 2016). Even under the fluctuating irradiance conditions in the rainy season of Thailand, the turbine could be operated well and generate electricity. Evaluation of the operation data has helped to learn more about DSG behaviour. The TSE1 layout and the implemented control strategies were evaluated and strategies for improvement of TSE1 are suggested within this paper. From the experiences with the TSE1 power plant, conclusions could be drawn to improve the layout and control of future DSG plants.
Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.06.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.06.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object , Other literature type 2015 GermanyPublisher:Elsevier BV Authors: Feldhoff, Jan Fabian; Hirsch, Tobias; Pitz-Paal, Robert; Valenzuela, Loreto;AbstractA transient model is the basis for understanding the characteristics of dynamic systems. It must always be a tradeoff between (modeling and computational) effort and the desired output. Thus, it is necessary for complex systems to develop special models adapted to the purpose. This has been performed for the case of direct steam generation (DSG) in parabolic trough or linear Fresnel solar fields, in which there is a long section of two-phase flow. In the once-through mode (OTM), feed water from the power block is directed to the inlet of a loop. The water is then preheated, completely evaporated and superheated along the loop. This paper presents two different types of transient models for such systems.A discretized finite element model is used for detailed system characteristics and understanding. A second moving boundary model is developed which includes the combination of lumped parameters with distributed information. This fast model can especially be used for control studies and model based predictive controllers. Both models are compared against experimental data and differences regarding various system characteristics are shown. Further models like linear transfer functions in the time-domain are mentioned and an overall overview on transient DSG models is provided.
Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu