- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Energy Research
- Open Access
- Restricted
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:MDPI AG Funded by:EC | RESINEC| RESINAuthors: Jeremy Carter; John Handley; Stephen Hincks; Angela Connelly;doi: 10.3390/su10051399
In 2012, the Intergovernmental Panel on Climate Change (IPCC) moved from a vulnerability to a risk-based conception of climate change adaptation. However, there are few examples of work that translates this approach into climate change adaptation practice, in order to demonstrate the practical utility of following a risk-based approach to adapting to climate change. The paper explores critically the differing conceptions of vulnerability and risk across the literature relating to disaster risk management and climate change adaptation. The paper also examines a selection of spatially focused climate change vulnerability and risk assessment methodologies in this context. In doing so, we identify issues with the availability of spatial data to enable spatial risk-based climate change assessments. We argue that the concept of risk is potentially favorable in helping cities to understand the challenges posed by climate change, identify adaptation options, and build resilience to the changing climate. However, we suggest that change is needed in the way that practitioners and policymakers engage with risk-based concepts if they are to be embed into climate change adaptation activities.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 63 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Grafakos, S; Viero, G; Reckien, D; Trigg, K; Viguie, V; Sudmant, A; Graves, C; Foley, A; Heidrich, O; Mirailles, JM; Carter, J; Chang, LH; Nador, C; Liseri, M; Chelleri, L; Orru, H; Orru, K; Aelenei, R; Bilska, A; Pfeiffer, B; Lepetit, Q; Church, JM; Landauer, M; Gouldson, A; Dawson, R;Cities are major drivers of energy consumption and greenhouse gas emissions--the sources of anthropocentric climate change, whilst also concentrating people, buildings, and infrastructures and therefore potential risk and impacts of the latter. As a consequence, planning for climate change in urban areas does not only provide the opportunity but should necessitate considering interactions between mitigation and adaptation actions. However, existing research found that only a minority of urban areas consider both mitigation and adaptation in their climate action plans, i.e. 147 Climate Change Action Plans (CCAPs) were identified among a representative sample of 885 European cities. We investigate these 147 CCAPs to understand the degree of integration of adaptation and mitigation and draw implications for the maximization of synergies and co-benefits of such a combined approach. Using the developed scoring framework to evaluate the level of integration of CCAPs, the research finds that most of the plans reveal a ‘moderate’ level of integration. Moderate integration characterizes a plan that identifies sources of emissions and vulnerabilities to climate change, as well as some qualitative consideration of the synergies, but one that lacks a systematic consideration of potential integration opportunities. Furthermore, the analysis reveals that one of the main gaps of the evaluation and implementation of more integrated climate change actions in cities is the insufficient quantitative evaluation of the costs and funding schemes for adaptation and mitigation action implementation.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 19visibility views 19 download downloads 647 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Carter, Jeremy G.; Cavan, Gina; Connelly, Angela; Guy, Simon; Handley, John; Kazmierczak, Aleksandra;AbstractThe significant shifts in climate variables projected for the 21st century, coupled with the observed impacts of ongoing extreme weather and climate events, ensures that adaptation to climate change is set to remain a pressing issue for urban areas over the coming decades. This volume of Progress in Planning seeks to contribute to the widening debate about how the transformation of cities to respond to the changing climate is being understood, managed and achieved. We focus particularly on spatial planning, and building the capacity of this key mechanism for responding to the adaptation imperative in urban areas. The core focus is the outcomes of a collaborative research project, EcoCities, undertaken at the University of Manchester's School of Environment and Development. EcoCities drew upon inter-disciplinary research on climate science, environmental planning and urban design working within a socio-technical framework to investigate climate change hazards, vulnerabilities and adaptation responses in the conurbation of Greater Manchester, UK. Emerging transferable learning with potential relevance for adaptation planning in other cities and urban areas is drawn out to inform this rapidly emerging international agenda. Approaches to build adaptive capacity challenge traditional approaches to environmental and spatial planning, and the role of researchers in this process, raising questions over whether appropriate governance structures are in place to develop effective responses. The cross-cutting nature of the adaptation agenda exposes the silo based approaches that drive many organisations. The development of a collaborative, sociotechnical agenda is vital if we are to meet the climate change adaptation challenge in cities.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.progress.2013.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 487 citations 487 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 16visibility views 16 download downloads 860 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.progress.2013.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:MDPI AG Funded by:EC | RESINEC| RESINAuthors: Jeremy Carter; John Handley; Stephen Hincks; Angela Connelly;doi: 10.3390/su10051399
In 2012, the Intergovernmental Panel on Climate Change (IPCC) moved from a vulnerability to a risk-based conception of climate change adaptation. However, there are few examples of work that translates this approach into climate change adaptation practice, in order to demonstrate the practical utility of following a risk-based approach to adapting to climate change. The paper explores critically the differing conceptions of vulnerability and risk across the literature relating to disaster risk management and climate change adaptation. The paper also examines a selection of spatially focused climate change vulnerability and risk assessment methodologies in this context. In doing so, we identify issues with the availability of spatial data to enable spatial risk-based climate change assessments. We argue that the concept of risk is potentially favorable in helping cities to understand the challenges posed by climate change, identify adaptation options, and build resilience to the changing climate. However, we suggest that change is needed in the way that practitioners and policymakers engage with risk-based concepts if they are to be embed into climate change adaptation activities.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 63 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Grafakos, S; Viero, G; Reckien, D; Trigg, K; Viguie, V; Sudmant, A; Graves, C; Foley, A; Heidrich, O; Mirailles, JM; Carter, J; Chang, LH; Nador, C; Liseri, M; Chelleri, L; Orru, H; Orru, K; Aelenei, R; Bilska, A; Pfeiffer, B; Lepetit, Q; Church, JM; Landauer, M; Gouldson, A; Dawson, R;Cities are major drivers of energy consumption and greenhouse gas emissions--the sources of anthropocentric climate change, whilst also concentrating people, buildings, and infrastructures and therefore potential risk and impacts of the latter. As a consequence, planning for climate change in urban areas does not only provide the opportunity but should necessitate considering interactions between mitigation and adaptation actions. However, existing research found that only a minority of urban areas consider both mitigation and adaptation in their climate action plans, i.e. 147 Climate Change Action Plans (CCAPs) were identified among a representative sample of 885 European cities. We investigate these 147 CCAPs to understand the degree of integration of adaptation and mitigation and draw implications for the maximization of synergies and co-benefits of such a combined approach. Using the developed scoring framework to evaluate the level of integration of CCAPs, the research finds that most of the plans reveal a ‘moderate’ level of integration. Moderate integration characterizes a plan that identifies sources of emissions and vulnerabilities to climate change, as well as some qualitative consideration of the synergies, but one that lacks a systematic consideration of potential integration opportunities. Furthermore, the analysis reveals that one of the main gaps of the evaluation and implementation of more integrated climate change actions in cities is the insufficient quantitative evaluation of the costs and funding schemes for adaptation and mitigation action implementation.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 19visibility views 19 download downloads 647 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Carter, Jeremy G.; Cavan, Gina; Connelly, Angela; Guy, Simon; Handley, John; Kazmierczak, Aleksandra;AbstractThe significant shifts in climate variables projected for the 21st century, coupled with the observed impacts of ongoing extreme weather and climate events, ensures that adaptation to climate change is set to remain a pressing issue for urban areas over the coming decades. This volume of Progress in Planning seeks to contribute to the widening debate about how the transformation of cities to respond to the changing climate is being understood, managed and achieved. We focus particularly on spatial planning, and building the capacity of this key mechanism for responding to the adaptation imperative in urban areas. The core focus is the outcomes of a collaborative research project, EcoCities, undertaken at the University of Manchester's School of Environment and Development. EcoCities drew upon inter-disciplinary research on climate science, environmental planning and urban design working within a socio-technical framework to investigate climate change hazards, vulnerabilities and adaptation responses in the conurbation of Greater Manchester, UK. Emerging transferable learning with potential relevance for adaptation planning in other cities and urban areas is drawn out to inform this rapidly emerging international agenda. Approaches to build adaptive capacity challenge traditional approaches to environmental and spatial planning, and the role of researchers in this process, raising questions over whether appropriate governance structures are in place to develop effective responses. The cross-cutting nature of the adaptation agenda exposes the silo based approaches that drive many organisations. The development of a collaborative, sociotechnical agenda is vital if we are to meet the climate change adaptation challenge in cities.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.progress.2013.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 487 citations 487 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 16visibility views 16 download downloads 860 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.progress.2013.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu