- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, FrancePublisher:Copernicus GmbH Funded by:DFG | Atmospheric and Earth Sys..., EC | MEMO2DFG| Atmospheric and Earth System Research with the "High Altitude and Long Range Research Aircraft" (HALO) ,EC| MEMO2A. Fiehn; M. Eckl; J. Kostinek; M. Gałkowski; M. Gałkowski; C. Gerbig; M. Rothe; T. Röckmann; M. Menoud; M. Menoud; H. Maazallahi; M. Schmidt; P. Korbeń; J. Neçki; M. Stanisavljević; M. Stanisavljević; J. Swolkień; A. Fix; A. Roiger;Abstract. Anthropogenic emissions are the primary source of the increase in atmospheric methane (CH4) levels. However, estimates of anthropogenic CH4 emissions still show large uncertainties at global and regional scales. Differences in CH4 isotopic source signatures δ13C and δ2H can help to constrain different source contributions (e.g., fossil, waste, agriculture). The Upper Silesian Coal Basin (USCB) represents one of the largest European CH4 emission regions, with more than 500 Gg CH4 yr−1 released from more than 50 coal mine ventilation shafts, landfills, and wastewater treatment plants. During the CoMet (Carbon Dioxide and Methane Mission) campaign in June 2018 methane observations were conducted from a variety of platforms including aircraft and cars to quantify these emissions. Besides the continuous sampling of atmospheric methane concentration, numerous air samples were taken from inside and around the ventilation shafts (1–2 km distance) and aboard the High Altitude and Long Range Research Aircraft (HALO) and DLR Cessna Caravan aircraft, and they were analyzed in the laboratory for the isotopic composition of CH4. The airborne samples downwind of the USCB contained methane from the entire region and thus enabled determining the mean signature of the USCB accurately. This mean isotopic signature of methane emissions was -50.9±0.7 ‰ for δ13C and -226±9 ‰ for δ2H. This is in the range of previous USCB studies based on samples taken within the mines for δ13C but more depleted in δ2H than reported before. Signatures of methane enhancements sampled upwind of the mines and in the free troposphere clearly showed the influence of biogenic sources. We determined the source signatures of individual coal mine ventilation shafts using ground-based samples. These signatures displayed a considerable range between different mines and also varied for individual shafts from day to day. Different layers of the USCB coal contain thermogenic methane, isotopically similar to natural gas, and methane formed through biogenic carbonate reduction. The signatures vary depending on what layer of coal is mined at the time of sampling. Mean shaft signatures range from −60 ‰ to −42 ‰ for δ13C and from −200 ‰ to −160 ‰ for δ2H. A gradient in the signatures of subregions of the USCB is reflected both in the aircraft data and in the ground samples, with emissions from the southwest being most depleted in δ2H and emissions from the south being most depleted in δ13C, which is probably associated with the structural and lithostratigraphic history of the USCB and generation and migration processes of methane in the coal. The average signature of -49.8±5.7 ‰ in δ13C and -184±32 ‰ in δ2H from the ventilation shafts clearly differs from the USCB regional signature in δ2H. This makes a source attribution using δ2H signatures possible, which would not be possible with only the δ13C isotopic signatures. We assume that the USCB plume mainly contains fossil coal mine methane and biogenic methane from waste treatment, because the USCB is a highly industrialized region with few other possible methane sources. Assuming a biogenic methane signature between and −320 ‰ and −280 ‰ for δ2H, the biogenic methane emissions from the USCB account for 15 %–50 % of total emissions. The uncertainty range shows the need of comprehensive and extensive sampling from all possible source sectors for source apportionment. The share of anthropogenic–biogenic emissions of 0.4 %–14 % from this densely populated industrial region is underestimated in commonly used emission inventories. Generally, this study demonstrates the importance of δ2H-CH4 observations for methane source apportionment in regions with a mix of thermogenic and biogenic sources and, especially in our case, where the δ13C signature of the coal mine gas has a large variability.
Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, FrancePublisher:Copernicus GmbH Funded by:DFG | Atmospheric and Earth Sys..., EC | MEMO2DFG| Atmospheric and Earth System Research with the "High Altitude and Long Range Research Aircraft" (HALO) ,EC| MEMO2A. Fiehn; M. Eckl; J. Kostinek; M. Gałkowski; M. Gałkowski; C. Gerbig; M. Rothe; T. Röckmann; M. Menoud; M. Menoud; H. Maazallahi; M. Schmidt; P. Korbeń; J. Neçki; M. Stanisavljević; M. Stanisavljević; J. Swolkień; A. Fix; A. Roiger;Abstract. Anthropogenic emissions are the primary source of the increase in atmospheric methane (CH4) levels. However, estimates of anthropogenic CH4 emissions still show large uncertainties at global and regional scales. Differences in CH4 isotopic source signatures δ13C and δ2H can help to constrain different source contributions (e.g., fossil, waste, agriculture). The Upper Silesian Coal Basin (USCB) represents one of the largest European CH4 emission regions, with more than 500 Gg CH4 yr−1 released from more than 50 coal mine ventilation shafts, landfills, and wastewater treatment plants. During the CoMet (Carbon Dioxide and Methane Mission) campaign in June 2018 methane observations were conducted from a variety of platforms including aircraft and cars to quantify these emissions. Besides the continuous sampling of atmospheric methane concentration, numerous air samples were taken from inside and around the ventilation shafts (1–2 km distance) and aboard the High Altitude and Long Range Research Aircraft (HALO) and DLR Cessna Caravan aircraft, and they were analyzed in the laboratory for the isotopic composition of CH4. The airborne samples downwind of the USCB contained methane from the entire region and thus enabled determining the mean signature of the USCB accurately. This mean isotopic signature of methane emissions was -50.9±0.7 ‰ for δ13C and -226±9 ‰ for δ2H. This is in the range of previous USCB studies based on samples taken within the mines for δ13C but more depleted in δ2H than reported before. Signatures of methane enhancements sampled upwind of the mines and in the free troposphere clearly showed the influence of biogenic sources. We determined the source signatures of individual coal mine ventilation shafts using ground-based samples. These signatures displayed a considerable range between different mines and also varied for individual shafts from day to day. Different layers of the USCB coal contain thermogenic methane, isotopically similar to natural gas, and methane formed through biogenic carbonate reduction. The signatures vary depending on what layer of coal is mined at the time of sampling. Mean shaft signatures range from −60 ‰ to −42 ‰ for δ13C and from −200 ‰ to −160 ‰ for δ2H. A gradient in the signatures of subregions of the USCB is reflected both in the aircraft data and in the ground samples, with emissions from the southwest being most depleted in δ2H and emissions from the south being most depleted in δ13C, which is probably associated with the structural and lithostratigraphic history of the USCB and generation and migration processes of methane in the coal. The average signature of -49.8±5.7 ‰ in δ13C and -184±32 ‰ in δ2H from the ventilation shafts clearly differs from the USCB regional signature in δ2H. This makes a source attribution using δ2H signatures possible, which would not be possible with only the δ13C isotopic signatures. We assume that the USCB plume mainly contains fossil coal mine methane and biogenic methane from waste treatment, because the USCB is a highly industrialized region with few other possible methane sources. Assuming a biogenic methane signature between and −320 ‰ and −280 ‰ for δ2H, the biogenic methane emissions from the USCB account for 15 %–50 % of total emissions. The uncertainty range shows the need of comprehensive and extensive sampling from all possible source sectors for source apportionment. The share of anthropogenic–biogenic emissions of 0.4 %–14 % from this densely populated industrial region is underestimated in commonly used emission inventories. Generally, this study demonstrates the importance of δ2H-CH4 observations for methane source apportionment in regions with a mix of thermogenic and biogenic sources and, especially in our case, where the δ13C signature of the coal mine gas has a large variability.
Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 PolandPublisher:MDPI AG Miroslaw Zimnoch; Lucyna Samek; Leszek Furman; Katarzyna Styszko; Alicja Skiba; Zbigniew Gorczyca; Michal Galkowski; Kazimierz Rozanski; Ewa Konduracka;doi: 10.3390/su12145777
Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 PolandPublisher:MDPI AG Miroslaw Zimnoch; Lucyna Samek; Leszek Furman; Katarzyna Styszko; Alicja Skiba; Zbigniew Gorczyca; Michal Galkowski; Kazimierz Rozanski; Ewa Konduracka;doi: 10.3390/su12145777
Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020 GermanyPublisher:Copernicus GmbH Theresa Klausner; Mariano Mertens; Heidi Huntrieser; Michal Galkowski; Gerrit Kuhlmann; Robert Baumann; Alina Fiehn; Patrick Jöckel; Magdalena Pühl; Anke Roiger;<p>Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). The total amount of urban GHG emissions, especially for CH<sub>4</sub>, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital city Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]<sup>2</sup> project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20<sup>th</sup> enhancements of up to 4 ppm CO<sub>2</sub> and 21 ppb CH<sub>4</sub> were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO<sub>2</sub> emission flux of 1.39 &#177; 0.75 t s<sup>-1 </sup>is in agreement with current inventories, while the CH<sub>4</sub> emission flux of 5.20 &#177; 1.61 kg s<sup>-1</sup> is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the high resolution numerical model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH<sub>4</sub>, which are treated differently by the emission inventories. Our work highlights the importance of a) strong CH<sub>4</sub> sources in the surroundings of Berlin and b) a detailed knowledge of GHG inflow mixing ratios to suitably estimate emission rates.</p>
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020 GermanyPublisher:Copernicus GmbH Theresa Klausner; Mariano Mertens; Heidi Huntrieser; Michal Galkowski; Gerrit Kuhlmann; Robert Baumann; Alina Fiehn; Patrick Jöckel; Magdalena Pühl; Anke Roiger;<p>Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). The total amount of urban GHG emissions, especially for CH<sub>4</sub>, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital city Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]<sup>2</sup> project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20<sup>th</sup> enhancements of up to 4 ppm CO<sub>2</sub> and 21 ppb CH<sub>4</sub> were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO<sub>2</sub> emission flux of 1.39 &#177; 0.75 t s<sup>-1 </sup>is in agreement with current inventories, while the CH<sub>4</sub> emission flux of 5.20 &#177; 1.61 kg s<sup>-1</sup> is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the high resolution numerical model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH<sub>4</sub>, which are treated differently by the emission inventories. Our work highlights the importance of a) strong CH<sub>4</sub> sources in the surroundings of Berlin and b) a detailed knowledge of GHG inflow mixing ratios to suitably estimate emission rates.</p>
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, FrancePublisher:Copernicus GmbH Funded by:DFG | Atmospheric and Earth Sys..., EC | MEMO2DFG| Atmospheric and Earth System Research with the "High Altitude and Long Range Research Aircraft" (HALO) ,EC| MEMO2A. Fiehn; M. Eckl; J. Kostinek; M. Gałkowski; M. Gałkowski; C. Gerbig; M. Rothe; T. Röckmann; M. Menoud; M. Menoud; H. Maazallahi; M. Schmidt; P. Korbeń; J. Neçki; M. Stanisavljević; M. Stanisavljević; J. Swolkień; A. Fix; A. Roiger;Abstract. Anthropogenic emissions are the primary source of the increase in atmospheric methane (CH4) levels. However, estimates of anthropogenic CH4 emissions still show large uncertainties at global and regional scales. Differences in CH4 isotopic source signatures δ13C and δ2H can help to constrain different source contributions (e.g., fossil, waste, agriculture). The Upper Silesian Coal Basin (USCB) represents one of the largest European CH4 emission regions, with more than 500 Gg CH4 yr−1 released from more than 50 coal mine ventilation shafts, landfills, and wastewater treatment plants. During the CoMet (Carbon Dioxide and Methane Mission) campaign in June 2018 methane observations were conducted from a variety of platforms including aircraft and cars to quantify these emissions. Besides the continuous sampling of atmospheric methane concentration, numerous air samples were taken from inside and around the ventilation shafts (1–2 km distance) and aboard the High Altitude and Long Range Research Aircraft (HALO) and DLR Cessna Caravan aircraft, and they were analyzed in the laboratory for the isotopic composition of CH4. The airborne samples downwind of the USCB contained methane from the entire region and thus enabled determining the mean signature of the USCB accurately. This mean isotopic signature of methane emissions was -50.9±0.7 ‰ for δ13C and -226±9 ‰ for δ2H. This is in the range of previous USCB studies based on samples taken within the mines for δ13C but more depleted in δ2H than reported before. Signatures of methane enhancements sampled upwind of the mines and in the free troposphere clearly showed the influence of biogenic sources. We determined the source signatures of individual coal mine ventilation shafts using ground-based samples. These signatures displayed a considerable range between different mines and also varied for individual shafts from day to day. Different layers of the USCB coal contain thermogenic methane, isotopically similar to natural gas, and methane formed through biogenic carbonate reduction. The signatures vary depending on what layer of coal is mined at the time of sampling. Mean shaft signatures range from −60 ‰ to −42 ‰ for δ13C and from −200 ‰ to −160 ‰ for δ2H. A gradient in the signatures of subregions of the USCB is reflected both in the aircraft data and in the ground samples, with emissions from the southwest being most depleted in δ2H and emissions from the south being most depleted in δ13C, which is probably associated with the structural and lithostratigraphic history of the USCB and generation and migration processes of methane in the coal. The average signature of -49.8±5.7 ‰ in δ13C and -184±32 ‰ in δ2H from the ventilation shafts clearly differs from the USCB regional signature in δ2H. This makes a source attribution using δ2H signatures possible, which would not be possible with only the δ13C isotopic signatures. We assume that the USCB plume mainly contains fossil coal mine methane and biogenic methane from waste treatment, because the USCB is a highly industrialized region with few other possible methane sources. Assuming a biogenic methane signature between and −320 ‰ and −280 ‰ for δ2H, the biogenic methane emissions from the USCB account for 15 %–50 % of total emissions. The uncertainty range shows the need of comprehensive and extensive sampling from all possible source sectors for source apportionment. The share of anthropogenic–biogenic emissions of 0.4 %–14 % from this densely populated industrial region is underestimated in commonly used emission inventories. Generally, this study demonstrates the importance of δ2H-CH4 observations for methane source apportionment in regions with a mix of thermogenic and biogenic sources and, especially in our case, where the δ13C signature of the coal mine gas has a large variability.
Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, FrancePublisher:Copernicus GmbH Funded by:DFG | Atmospheric and Earth Sys..., EC | MEMO2DFG| Atmospheric and Earth System Research with the "High Altitude and Long Range Research Aircraft" (HALO) ,EC| MEMO2A. Fiehn; M. Eckl; J. Kostinek; M. Gałkowski; M. Gałkowski; C. Gerbig; M. Rothe; T. Röckmann; M. Menoud; M. Menoud; H. Maazallahi; M. Schmidt; P. Korbeń; J. Neçki; M. Stanisavljević; M. Stanisavljević; J. Swolkień; A. Fix; A. Roiger;Abstract. Anthropogenic emissions are the primary source of the increase in atmospheric methane (CH4) levels. However, estimates of anthropogenic CH4 emissions still show large uncertainties at global and regional scales. Differences in CH4 isotopic source signatures δ13C and δ2H can help to constrain different source contributions (e.g., fossil, waste, agriculture). The Upper Silesian Coal Basin (USCB) represents one of the largest European CH4 emission regions, with more than 500 Gg CH4 yr−1 released from more than 50 coal mine ventilation shafts, landfills, and wastewater treatment plants. During the CoMet (Carbon Dioxide and Methane Mission) campaign in June 2018 methane observations were conducted from a variety of platforms including aircraft and cars to quantify these emissions. Besides the continuous sampling of atmospheric methane concentration, numerous air samples were taken from inside and around the ventilation shafts (1–2 km distance) and aboard the High Altitude and Long Range Research Aircraft (HALO) and DLR Cessna Caravan aircraft, and they were analyzed in the laboratory for the isotopic composition of CH4. The airborne samples downwind of the USCB contained methane from the entire region and thus enabled determining the mean signature of the USCB accurately. This mean isotopic signature of methane emissions was -50.9±0.7 ‰ for δ13C and -226±9 ‰ for δ2H. This is in the range of previous USCB studies based on samples taken within the mines for δ13C but more depleted in δ2H than reported before. Signatures of methane enhancements sampled upwind of the mines and in the free troposphere clearly showed the influence of biogenic sources. We determined the source signatures of individual coal mine ventilation shafts using ground-based samples. These signatures displayed a considerable range between different mines and also varied for individual shafts from day to day. Different layers of the USCB coal contain thermogenic methane, isotopically similar to natural gas, and methane formed through biogenic carbonate reduction. The signatures vary depending on what layer of coal is mined at the time of sampling. Mean shaft signatures range from −60 ‰ to −42 ‰ for δ13C and from −200 ‰ to −160 ‰ for δ2H. A gradient in the signatures of subregions of the USCB is reflected both in the aircraft data and in the ground samples, with emissions from the southwest being most depleted in δ2H and emissions from the south being most depleted in δ13C, which is probably associated with the structural and lithostratigraphic history of the USCB and generation and migration processes of methane in the coal. The average signature of -49.8±5.7 ‰ in δ13C and -184±32 ‰ in δ2H from the ventilation shafts clearly differs from the USCB regional signature in δ2H. This makes a source attribution using δ2H signatures possible, which would not be possible with only the δ13C isotopic signatures. We assume that the USCB plume mainly contains fossil coal mine methane and biogenic methane from waste treatment, because the USCB is a highly industrialized region with few other possible methane sources. Assuming a biogenic methane signature between and −320 ‰ and −280 ‰ for δ2H, the biogenic methane emissions from the USCB account for 15 %–50 % of total emissions. The uncertainty range shows the need of comprehensive and extensive sampling from all possible source sectors for source apportionment. The share of anthropogenic–biogenic emissions of 0.4 %–14 % from this densely populated industrial region is underestimated in commonly used emission inventories. Generally, this study demonstrates the importance of δ2H-CH4 observations for methane source apportionment in regions with a mix of thermogenic and biogenic sources and, especially in our case, where the δ13C signature of the coal mine gas has a large variability.
Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Atmospheric Chemistr... arrow_drop_down Atmospheric Chemistry and Physics (ACP)Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-23-15749-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 PolandPublisher:MDPI AG Miroslaw Zimnoch; Lucyna Samek; Leszek Furman; Katarzyna Styszko; Alicja Skiba; Zbigniew Gorczyca; Michal Galkowski; Kazimierz Rozanski; Ewa Konduracka;doi: 10.3390/su12145777
Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 PolandPublisher:MDPI AG Miroslaw Zimnoch; Lucyna Samek; Leszek Furman; Katarzyna Styszko; Alicja Skiba; Zbigniew Gorczyca; Michal Galkowski; Kazimierz Rozanski; Ewa Konduracka;doi: 10.3390/su12145777
Successful mitigation of air pollution in large cities requires information about the structure of emission sources and their contribution to total atmospheric load. The presented research demonstrates a possibility of application of isotope tracers for the estimation of contribution of different sources to the carbonaceous fraction of PM2.5 (Particulate Matter containing fraction below 2.5 μm) collected in the urban atmosphere of Krakow, Poland during the summer and winter seasons. Isotope mass balance approach was used to perform source apportionment analysis for those two seasons. The analysis showed that the dominant source of the carbonaceous fraction of PM2.5 in Krakow is coal burning during the winter season and biogenic emissions during the summer season. Sensitivity analysis revealed that the uncertainty of the percentage contribution of different sources to the overall carbon load of the analyzed PM2.5 fraction is in order of a few percent.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/14/5777/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020 GermanyPublisher:Copernicus GmbH Theresa Klausner; Mariano Mertens; Heidi Huntrieser; Michal Galkowski; Gerrit Kuhlmann; Robert Baumann; Alina Fiehn; Patrick Jöckel; Magdalena Pühl; Anke Roiger;<p>Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). The total amount of urban GHG emissions, especially for CH<sub>4</sub>, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital city Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]<sup>2</sup> project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20<sup>th</sup> enhancements of up to 4 ppm CO<sub>2</sub> and 21 ppb CH<sub>4</sub> were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO<sub>2</sub> emission flux of 1.39 &#177; 0.75 t s<sup>-1 </sup>is in agreement with current inventories, while the CH<sub>4</sub> emission flux of 5.20 &#177; 1.61 kg s<sup>-1</sup> is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the high resolution numerical model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH<sub>4</sub>, which are treated differently by the emission inventories. Our work highlights the importance of a) strong CH<sub>4</sub> sources in the surroundings of Berlin and b) a detailed knowledge of GHG inflow mixing ratios to suitably estimate emission rates.</p>
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020 GermanyPublisher:Copernicus GmbH Theresa Klausner; Mariano Mertens; Heidi Huntrieser; Michal Galkowski; Gerrit Kuhlmann; Robert Baumann; Alina Fiehn; Patrick Jöckel; Magdalena Pühl; Anke Roiger;<p>Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). The total amount of urban GHG emissions, especially for CH<sub>4</sub>, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital city Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]<sup>2</sup> project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20<sup>th</sup> enhancements of up to 4 ppm CO<sub>2</sub> and 21 ppb CH<sub>4</sub> were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO<sub>2</sub> emission flux of 1.39 &#177; 0.75 t s<sup>-1 </sup>is in agreement with current inventories, while the CH<sub>4</sub> emission flux of 5.20 &#177; 1.61 kg s<sup>-1</sup> is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the high resolution numerical model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH<sub>4</sub>, which are treated differently by the emission inventories. Our work highlights the importance of a) strong CH<sub>4</sub> sources in the surroundings of Berlin and b) a detailed knowledge of GHG inflow mixing ratios to suitably estimate emission rates.</p>
Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Elementa: Science of... arrow_drop_down Elementa: Science of the AnthropoceneArticle . 2020Data sources: Elementa: Science of the AnthropoceneElementa: Science of the AnthropoceneArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-3363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu