- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 20 Aug 2024 Austria, United Kingdom, BelgiumPublisher:American Geophysical Union (AGU) Funded by:EC | CONSTRAIN, EC | ESM2025EC| CONSTRAIN ,EC| ESM2025Johannes Quaas; Timothy Andrews; Nicolas Bellouin; Karoline Block; Olivier Boucher; Paulo Ceppi; Guy Dagan; Sabine Doktorowski; Hannah Marie Eichholz; Piers Forster; Tom Goren; Edward Gryspeerdt; Øivind Hodnebrog; Hailing Jia; Ryan Kramer; Charlotte Lange; Amanda C. Maycock; Johannes Mülmenstädt; Gunnar Myhre; Fiona M. O’Connor; Robert Pincus; Bjørn Hallvard Samset; Fabian Senf; Keith P. Shine; Chris Smith; Camilla Weum Stjern; Toshihiko Takemura; Velle Toll; Casey J. Wall;AbstractSince the 5th Assessment Report of the Intergovernmental Panel on Climate Change (AR5) an extended concept of the energetic analysis of climate change including forcings, feedbacks and adjustment processes has become widely adopted. Adjustments are defined as processes that occur in response to the introduction of a climate forcing agent, but that are independent of global‐mean surface temperature changes. Most considered are the adjustments that impact the Earth energy budget and strengthen or weaken the instantaneous radiative forcing due to the forcing agent. Some adjustment mechanisms also impact other aspects of climate not related to the Earth radiation budget. Since AR5 and a following description by Sherwood et al. (2015, https://doi.org/10.1175/bams‐d‐13‐00167.1), much research on adjustments has been performed and is reviewed here. We classify the adjustment mechanisms into six main categories, and discuss methods of quantifying these adjustments in terms of their potentials, shortcomings and practicality. We furthermore describe aspects of adjustments that act beyond the energetic framework, and we propose new ideas to observe adjustments or to make use of observations to constrain their representation in models. Altogether, the problem of adjustments is now on a robust scientific footing, and better quantification and observational constraint is possible. This allows for improvements in understanding and quantifying climate change.
IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115466Data sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023av001144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115466Data sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023av001144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 GermanyPublisher:Copernicus GmbH Hartwig Deneke; Carola Barrientos-Velasco; Sebastian Bley; Anja Hünerbein; Stephan Lenk; Andreas Macke; Jan Fokke Meirink; Marion Schroedter-Homscheidt; Fabian Senf; Ping Wang; Frank Werner; Jonas Witthuhn;Abstract. The modification of an existing cloud property retrieval scheme for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard the geostationary METEOSAT satellites is described to utilize its high-resolution visible (HRV) channel for increasing the spatial resolution of its physical outputs. This results in products with a nadir spatial resolution of 1 × 1 km2, compared to the standard 3 × 3 km2 resolution offered by the narrowband channels. This improvement thus greatly reduces the resolution gap between current geostationary and polar-orbiting meteorological satellite imagers. In the first processing step, cloudiness is determined from the HRV observations by a threshold-based cloud masking algorithm. Subsequently, a linear model that links the 0.6 μm, 0.8 μm, and HRV reflectances provides a physical constraint to incorporate the spatial high-frequency component of the HRV observations into the retrieval of cloud optical depth. The implementation of the method is described, including the ancillary datasets used. It is demonstrated that the omission of high-frequency variations in the cloud-absorbing 1.6 μm channel results in comparatively large uncertainties in the retrieved cloud effective radius, likely due to the mismatch in channel resolutions. A newly developed downscaling scheme for the 1.6 μm reflectance is therefore applied to mitigate the effects of this scale mismatch. Benefits of the increased spatial resolution of the resulting SEVIRI products are demonstrated for three example applications: (i) for a convective cloud field, it is shown that significantly better agreement between the distributions of cloud optical depth retrieved from SEVIRI and from collocated MODIS observations is achieved; (ii) the temporal evolution of cloud properties for a growing convective storm at standard and HRV spatial resolutions are compared, illustrating an improved contrast in growth signatures resulting from the use of the HRV channel; (iii) an example of surface solar irradiance, determined from the retrieved cloud properties, is shown, where the HRV channel helps to better capture the large spatio-temporal variability induced by convective clouds. These results suggest that incorporating the HRV channel in the retrieval has potential for improving METEOSAT-based cloud products for several application domains.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/amt-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-2020-370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/amt-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-2020-370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 20 Aug 2024 Austria, United Kingdom, BelgiumPublisher:American Geophysical Union (AGU) Funded by:EC | CONSTRAIN, EC | ESM2025EC| CONSTRAIN ,EC| ESM2025Johannes Quaas; Timothy Andrews; Nicolas Bellouin; Karoline Block; Olivier Boucher; Paulo Ceppi; Guy Dagan; Sabine Doktorowski; Hannah Marie Eichholz; Piers Forster; Tom Goren; Edward Gryspeerdt; Øivind Hodnebrog; Hailing Jia; Ryan Kramer; Charlotte Lange; Amanda C. Maycock; Johannes Mülmenstädt; Gunnar Myhre; Fiona M. O’Connor; Robert Pincus; Bjørn Hallvard Samset; Fabian Senf; Keith P. Shine; Chris Smith; Camilla Weum Stjern; Toshihiko Takemura; Velle Toll; Casey J. Wall;AbstractSince the 5th Assessment Report of the Intergovernmental Panel on Climate Change (AR5) an extended concept of the energetic analysis of climate change including forcings, feedbacks and adjustment processes has become widely adopted. Adjustments are defined as processes that occur in response to the introduction of a climate forcing agent, but that are independent of global‐mean surface temperature changes. Most considered are the adjustments that impact the Earth energy budget and strengthen or weaken the instantaneous radiative forcing due to the forcing agent. Some adjustment mechanisms also impact other aspects of climate not related to the Earth radiation budget. Since AR5 and a following description by Sherwood et al. (2015, https://doi.org/10.1175/bams‐d‐13‐00167.1), much research on adjustments has been performed and is reviewed here. We classify the adjustment mechanisms into six main categories, and discuss methods of quantifying these adjustments in terms of their potentials, shortcomings and practicality. We furthermore describe aspects of adjustments that act beyond the energetic framework, and we propose new ideas to observe adjustments or to make use of observations to constrain their representation in models. Altogether, the problem of adjustments is now on a robust scientific footing, and better quantification and observational constraint is possible. This allows for improvements in understanding and quantifying climate change.
IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115466Data sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023av001144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/115466Data sources: Bielefeld Academic Search Engine (BASE)Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023av001144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 GermanyPublisher:Copernicus GmbH Hartwig Deneke; Carola Barrientos-Velasco; Sebastian Bley; Anja Hünerbein; Stephan Lenk; Andreas Macke; Jan Fokke Meirink; Marion Schroedter-Homscheidt; Fabian Senf; Ping Wang; Frank Werner; Jonas Witthuhn;Abstract. The modification of an existing cloud property retrieval scheme for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard the geostationary METEOSAT satellites is described to utilize its high-resolution visible (HRV) channel for increasing the spatial resolution of its physical outputs. This results in products with a nadir spatial resolution of 1 × 1 km2, compared to the standard 3 × 3 km2 resolution offered by the narrowband channels. This improvement thus greatly reduces the resolution gap between current geostationary and polar-orbiting meteorological satellite imagers. In the first processing step, cloudiness is determined from the HRV observations by a threshold-based cloud masking algorithm. Subsequently, a linear model that links the 0.6 μm, 0.8 μm, and HRV reflectances provides a physical constraint to incorporate the spatial high-frequency component of the HRV observations into the retrieval of cloud optical depth. The implementation of the method is described, including the ancillary datasets used. It is demonstrated that the omission of high-frequency variations in the cloud-absorbing 1.6 μm channel results in comparatively large uncertainties in the retrieved cloud effective radius, likely due to the mismatch in channel resolutions. A newly developed downscaling scheme for the 1.6 μm reflectance is therefore applied to mitigate the effects of this scale mismatch. Benefits of the increased spatial resolution of the resulting SEVIRI products are demonstrated for three example applications: (i) for a convective cloud field, it is shown that significantly better agreement between the distributions of cloud optical depth retrieved from SEVIRI and from collocated MODIS observations is achieved; (ii) the temporal evolution of cloud properties for a growing convective storm at standard and HRV spatial resolutions are compared, illustrating an improved contrast in growth signatures resulting from the use of the HRV channel; (iii) an example of surface solar irradiance, determined from the retrieved cloud properties, is shown, where the HRV channel helps to better capture the large spatio-temporal variability induced by convective clouds. These results suggest that incorporating the HRV channel in the retrieval has potential for improving METEOSAT-based cloud products for several application domains.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/amt-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-2020-370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/amt-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Measurement Techniques (AMT)Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/amt-2020-370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu