- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Ishfaq; Bilal Khan; Aun Haider; Muhammad Adil; Ayesha; Imran Khan; Hee-Je Kim; Saiful Islam; Waqar Uddin; Kamran Zeb; Kamran Zeb;Currently, the electrical energy crisis is an important issue in Pakistan. Due to the shortage of electrical power, inhabitants of the country are facing 10–12 h of blackouts in urban areas and 14–20 h in rural areas daily. The current demand for electrical power is 15,000 MW, which is expected to increase further to 49,078 MW by 2050. Conventional energy sources are unable to meet this demand. This paper discusses the potential of Small Hydro Power Plants (SHPPs) to partially overcome the shortage of electricity. Overall, 60,000 MW of hydroelectric resources have been identified in Pakistan. whereas, approximately 11% of the identified resources are operational, producing 7228 MW of electric power. The energy crisis can be easily overcome by installing SHPPs. The use of SHPPs has been estimated to save 120 million tons of coal or 83.3 billion liters of oil in a year. Thus, these plants are environmentally friendly and make a low contribution to global warming. Worldwide, SHPPs provide employment to 0.2 million people. Pakistan Council of Renewable Energy Technology (PCRET) and Sarhad Rural Support Program (SRSP) has installed 1100 SHPPs, with a total capacity of 42.507 MW, which fulfills the electrical energy demand of approximately 0.7 million people in Pakistan.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2019.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2019.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Aun Haider; W. Din; U. Farid; Bilal Khan; C. A. Mehmood; Sahibzada Muhammad Ali; Kamran Zeb; N. Tareen;Abstract Waste heat recovery system plays a pivotal role for heat extractions in every energy consuming sector. Thermo-Electric Module converts this waste heat into useful work done as “electric energy”. Electric energy thus produced possesses many promissory benefits, such as: (a) energy storage in DC batteries, (b) running various loads in residential, commercial and industrial sector, (c) exporting power to grid, thus earning valuable revenues, (d) maintain economic growth of plant, and (e) environment friendly system. Recently, among various renewable energy technologies, Waste Heat Recovery (WHR) is paid much consideration in commercial, residential, and industrial sectors. In past decade, a number of WHR technologies are developed and improved. In this paper, relevant research works are reviewed regarding existing technologies of WHR. Thermoelectric Generator (TEG) is one of extensively emerging WHR technique among existing technologies. TEG with promising features, such as: simpler structure, vast scalability, solid state operation, the absence of toxic residuals, a long life span of reliable operation, no noise or vibration, and lack of chemical reaction or moving parts. Basic principle of TEG with its series and parallel arrangement for voltage and current enhancement is also reviewed. Our work described a standalone thermoelectric module generate 1–125 W whose modular arrangement produces ~ 5 kW and the wattage improvement is defendant on array size. The potential application of TEG in various applications are comprehensively discussed and described. A detailed description to Pakistan energy status and WHR potential especially in Cement Industry is assessed in this survey. Finally, the TEGs model in Matlab/SimScape for direct heat energy harvesting with DC/DC converter is simulated, as a case study of “Officer Colony, Abbottabad, Pakistan”.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Fahad Rehman; U. Farid; Yasir Mehmood; Alfredo Vaccaro; Umair Younas; Bilal Khan; Kamran Zeb; Sahibzada Muhammad Ali; C.M. Arshad;Abstract Pakistan is among the naturally gifted countries that are rich in conventional and renewable energy resources. Despite the massive potential of energy resources, Pakistan is still an energy deficient country and have to import petroleum products to barely accomplish its energy demand. Geothermal energy is still one of the unexplored energy resources for electric power generation in Pakistan. Pakistan can overcome the energy shortage to a significant level by harnessing renewable energy resources, such as, geothermal energy. Majority of the geothermal hot springs and mud volcanoes exists within the seismic belt of Pakistan. Therefore, the country has viable geothermal energy manifestations. Several hot springs in Gilgit and Hunza region are originated due to the collision of Indian Plate with Eurasian Plate. Similarly, various geothermal reservoirs exist in Northeast to Southeast narrow belt along Indus basin margin. The survey discusses the current energy crisis in Pakistan and addresses the role of geothermal energy for the economic development of Pakistan. We served the manifestation and geographies of geologically active zones of Pakistan, like fault lines, plate tectonics, belt, and tectonic thrust, cleanest, base load, reliable, renewable, and sustainable geothermal energy resources. In our work, the hot springs and mud volcanoes of geologically active areas in maps are enlisted in Tables with potential features. The schemes used for extraction of geothermal energy for electric power generation are also investigated. The global electric power production from geothermal energy is visualized and discussed. Moreover, the suitable moderate temperature Binary Cycle Geothermal Power Plant for electric power generation in Pakistan is also described in detail. Furthermore, geothermal plants are experimentally summarized in different case studies. Finally the performance of geothermal and conventional thermal plants is critically analysed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Saif Ul Islam; Kamran Zeb; Soobae Kim;doi: 10.3390/su141912251
This article demonstrates a new topology for optimization of the electrical variables and enhancement of low-voltage-ride-through (LVRT) capacity of a grid-tied photovoltaic system (PS) during asymmetrical faults. The proposed topology comprises a fuzzy-logic controller (FLC) based on gradient descent (GD) optimization in association with parallel-resonance-type fault current limiter (PRFCL) as an LVRT circuitry. Gradient descent is an iterative process to minimize the objective function by updating the variable in the opposite direction of the gradient of the objective function. The PRFCL optimizes the fault variables, specifically preventing voltage sag without any transitional spikes. A 100-kW detailed model of grid-tied PS is used in MATLAB/Simulink to analyze the response of the proposed topology at the point of common coupling (PCC) and PV side variables. A keen comparative study of the conventionally adopted proportional-integral (PI) controller in association with crowbar circuitry is carried out for the justification of the proposed topology. The simulation findings of the proposed topology authenticate the optimal response of variables in terms of stability, robustness, smoothness, and fault tolerance at both the grid side and the PV side.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Izhar Us Salam; Muhammad Yousif; Muhammad Numan; Kamran Zeb; Moatasim Billah;doi: 10.3390/en16165907
The integration of distributed generation (DG) into distribution networks introduces uncertainties that can substantially affect network reliability. It is crucial to implement appropriate measures to maintain reliability parameters within acceptable limits and ensure a stable power supply for consumers. This paper aims to optimize the location, size, and number of DG units to minimize active power losses and improve distribution System (DS) reliability while considering system operational constraints. To achieve this objective, multiple tests are conducted, and the particle swarm optimization (PSO) technique is implemented. The simulation studies are performed using the ETAP software 19.0.1 version, while the PSO algorithm is implemented in MATLAB R2018a. ETAP enables a comprehensive evaluation of the DG system’s performance, providing valuable insights into its effectiveness in reducing power losses and enhancing system reliability. The PSO algorithm in MATLAB ensures accurate optimization, facilitating the identification of the optimal DG unit location and size. This study uses a modified IEEE-13 bus unbalanced radial DS as the test system, assessing the effects of photovoltaic (PV) and wind DG units under various scenarios and penetration levels. The results demonstrate that the optimal DG unit location and size of either a single PV or wind DG unit significantly reduce power losses, improve DS reliability, and enable effective load sharing with the substation. Moreover, this study analyzes the impact of DG unit uncertainty on system performance. The findings underscore the potential of optimized DG integration to enhance DS efficiency and reliability in the presence of renewable energy sources.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Muhammad Umair Ali; Sarvar Hussain Nengroo; Muhamad Adil Khan; Kamran Zeb; Muhammad Ahmad Kamran; Hee-Je Kim;doi: 10.3390/en11051122
The lithium-ion battery has high energy and power density, long life cycle, low toxicity, low discharge rate, more reliability, and better efficiency compared to other batteries. On the other hand, the issue of a reduction in charging time of the lithium-ion battery is still a bottleneck for the commercialization of electric vehicles (EVs). Therefore, an approach to charge lithium-ion batteries at a faster rate is needed. This paper proposes an efficient, real-time, fast-charging methodology of lithium-ion batteries. Fuzzy logic was adopted to drive the charging current trajectory. A temperature control unit was also implemented to evade the effects of fast charging on the aging mechanism. The proposed method of charging also protects the battery from overvoltage and overheating. Extensive testing and comprehensive analysis were conducted to examine the proposed charging technique. The results show that the proposed charging strategy favors a full battery recharging in 9.76% less time than the conventional constant-current–constant-voltage (CC/CV) method. The strategy charges the battery at a 99.26% state of charge (SOC) without significant degradation. The entire scheme was implemented in real time, using Arduino interfaced with MATLABTM Simulink. This decrease in charging time assists in the fast charging of cell phones and notebooks and in the large-scale deployment of EVs.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1122/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1122/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Saiful Islam; Muhammad Ishfaq; Gwan-Soo Park; Aun Haider; Imran Khan; Kamran Zeb; Waqar Uddin; Nadia Zeb; Ayesha Tanoli; Hee-Je Kim;doi: 10.3390/en12193653
In this paper, a model reference controller (MRC) based on a neural network (NN) is proposed for damping oscillations in electric power systems. Variation in reactive load, internal or external perturbation/faults, and asynchronization of the connected machine cause oscillations in power systems. If the oscillation is not damped properly, it will lead to a complete collapse of the power system. An MRC base unified power flow controller (UPFC) is proposed to mitigate the oscillations in 2-area, 4-machine interconnected power systems. The MRC controller is using the NN for training, as well as for plant identification. The proposed NN-based MRC controller is capable of damping power oscillations; hence, the system acquires a stable condition. The response of the proposed MRC is compared with the traditionally used proportional integral (PI) controller to validate its performance. The key performance indicator integral square error (ISE) and integral absolute error (IAE) of both controllers is calculated for single phase, two phase, and three phase faults. MATLAB/Simulink is used to implement and simulate the 2-area, 4-machine power system.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3653/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3653/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Kamran Zeb; Tiago Davi Curi Busarello; Saif Ul Islam; Waqar Uddin; Kummara Venkata Guru Raghavendra; Muhammad Adil Khan; Hee-Je Kim;doi: 10.3390/en13153773
The novelty behind the research in this paper is to investigate the Super Twisting Sliding Mode Controller (ST-SMC) for efficiently injecting both active and reactive power under normal and abnormal operating conditions for a three-phase grid-connected photovoltaic (PV) system. The ST-SMC is aimed to inject sinusoidal current to the grid with low Total Harmonic Distortion (THD), to avoid chattering with easy real implementation, and to enhance the quality of disturbance rejection and sensitivity to parameter variation. The test under normal conditions includes initialization, steady state behavior, dynamic behavior, and interrupting the injection of acting and reactive power while the abnormal conditions consists of voltage sag, voltage swell, frequency variation, DC-link variation, and inclusion of 5th harmonics, etc. The phase lock loop used for synchronization is based on a synchronous reference frame that works well under distorted grids and nonideal. Automatic code is generated in PSIM 9.1 for hardware implementation in the DSP board TMS32F28335 from Texas Instruments while code composer studio 6.2.0 is used for debugging. The real time testing is executed using Typhoon Hardware in Loop (HIL) 402 device on the DSP board. The results authenticate the fastness, effectiveness, and robustness for both steady state and dynamic behavior under various scenarios of the designed controller.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Imran Khan; Kamran Zeb; Waqar Ud Din; Saif Ul Islam; Muhammad Ishfaq; Sadam Hussain; Hee-Je Kim;doi: 10.3390/en12030454
High penetration of large capacity wind turbines into power grid has led to serious concern about its influence on the dynamic behaviors of the power system. Unbalanced grid voltage causing DC-voltage fluctuations and DC-link capacitor large harmonic current which results in degrading reliability and lifespan of capacitor used in voltage source converter. Furthermore, due to magnetic saturation in the generator and non-linear loads distorted active and reactive power delivered to the grid, violating grid code. This paper provides a detailed investigation of dynamic behavior and transient characteristics of Doubly Fed Induction Generator (DFIG) during grid faults and voltage sags. It also presents novel grid side controllers, Adaptive Proportional Integral Controller (API) and Proportional Resonant with Resonant Harmonic Compensator (PR+RHC) which eliminate the negative impact of unbalanced grid voltage on the DC-capacitor as well as achieving harmonic filtering by compensating harmonics which improve power quality. Proposed algorithm focuses on mitigation of harmonic currents and voltage fluctuation in DC-capacitor making capacitor more reliable under transient grid conditions as well as distorted active and reactive power delivered to the electric grid. MATLAB/Simulink simulation of 2 MW DFIG model with 1150 V DC-linked voltage has been considered for validating the effectiveness of proposed control algorithms. The proposed controllers performance authenticates robust, ripples free, and fault-tolerant capability. In addition, performance indices and Total Harmonic Distortions (THD) are also calculated to verify the robustness of the designed controller.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/454/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/454/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Kamran Zeb; Waqar U. Din; Muhammad Adil Khan; Ayesha Khan; Umair Younas; Tiago Davi Curi Busarello; Hee Je Kim;doi: 10.3390/en11092339
Recently, the Indirect Field Oriented Control (IFOC) scheme for Induction Motors (IM) has gained wide acceptance in high performance applications. The IFOC has remarkable characteristics of decoupling torque and flux along with an easy hardware implementation. However, the detuning limits the performance of drives due to uncertainties of parameters. Conventionally, the use of a Proportional Integral Differential (PID) controller has been very frequent in variable speed drive applications. However, it does not allow for the operation of an IM in a wide range of speeds. In order to tackle these problems, optimal, robust, and adaptive control algorithms are mostly in use. The work presented in this paper is based on new optimal, robust, and adaptive control strategies, including an Adaptive Proportional Integral (PI) controller, sliding mode control, Fuzzy Logic (FL) control based on Steepest Descent (SD), Levenberg-Marquardt (LM) algorithms, and Hybrid Control (HC) or adaptive sliding mode controller to overcome the deficiency of conventional control strategies. The main theme is to design a robust control scheme having faster dynamic response, reliable operation for parameter uncertainties and speed variation, and maximized torque and efficiency of the IM. The test bench of the IM control has three main parts: IM model, Inverter Model, and control structure. The IM is modelled in synchronous frame using d q modelling while the Space Vector Pulse Width Modulation (SVPWM) technique is used for modulation of the inverter. Our proposed controllers are critically analyzed and compared with the PI controller considering different conditions: parameter uncertainties, speed variation, load disturbances, and under electrical faults. In addition, the results validate the effectiveness of the designed controllers and are then related to former works.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Muhammad Ishfaq; Bilal Khan; Aun Haider; Muhammad Adil; Ayesha; Imran Khan; Hee-Je Kim; Saiful Islam; Waqar Uddin; Kamran Zeb; Kamran Zeb;Currently, the electrical energy crisis is an important issue in Pakistan. Due to the shortage of electrical power, inhabitants of the country are facing 10–12 h of blackouts in urban areas and 14–20 h in rural areas daily. The current demand for electrical power is 15,000 MW, which is expected to increase further to 49,078 MW by 2050. Conventional energy sources are unable to meet this demand. This paper discusses the potential of Small Hydro Power Plants (SHPPs) to partially overcome the shortage of electricity. Overall, 60,000 MW of hydroelectric resources have been identified in Pakistan. whereas, approximately 11% of the identified resources are operational, producing 7228 MW of electric power. The energy crisis can be easily overcome by installing SHPPs. The use of SHPPs has been estimated to save 120 million tons of coal or 83.3 billion liters of oil in a year. Thus, these plants are environmentally friendly and make a low contribution to global warming. Worldwide, SHPPs provide employment to 0.2 million people. Pakistan Council of Renewable Energy Technology (PCRET) and Sarhad Rural Support Program (SRSP) has installed 1100 SHPPs, with a total capacity of 42.507 MW, which fulfills the electrical energy demand of approximately 0.7 million people in Pakistan.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2019.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2019.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Aun Haider; W. Din; U. Farid; Bilal Khan; C. A. Mehmood; Sahibzada Muhammad Ali; Kamran Zeb; N. Tareen;Abstract Waste heat recovery system plays a pivotal role for heat extractions in every energy consuming sector. Thermo-Electric Module converts this waste heat into useful work done as “electric energy”. Electric energy thus produced possesses many promissory benefits, such as: (a) energy storage in DC batteries, (b) running various loads in residential, commercial and industrial sector, (c) exporting power to grid, thus earning valuable revenues, (d) maintain economic growth of plant, and (e) environment friendly system. Recently, among various renewable energy technologies, Waste Heat Recovery (WHR) is paid much consideration in commercial, residential, and industrial sectors. In past decade, a number of WHR technologies are developed and improved. In this paper, relevant research works are reviewed regarding existing technologies of WHR. Thermoelectric Generator (TEG) is one of extensively emerging WHR technique among existing technologies. TEG with promising features, such as: simpler structure, vast scalability, solid state operation, the absence of toxic residuals, a long life span of reliable operation, no noise or vibration, and lack of chemical reaction or moving parts. Basic principle of TEG with its series and parallel arrangement for voltage and current enhancement is also reviewed. Our work described a standalone thermoelectric module generate 1–125 W whose modular arrangement produces ~ 5 kW and the wattage improvement is defendant on array size. The potential application of TEG in various applications are comprehensively discussed and described. A detailed description to Pakistan energy status and WHR potential especially in Cement Industry is assessed in this survey. Finally, the TEGs model in Matlab/SimScape for direct heat energy harvesting with DC/DC converter is simulated, as a case study of “Officer Colony, Abbottabad, Pakistan”.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Fahad Rehman; U. Farid; Yasir Mehmood; Alfredo Vaccaro; Umair Younas; Bilal Khan; Kamran Zeb; Sahibzada Muhammad Ali; C.M. Arshad;Abstract Pakistan is among the naturally gifted countries that are rich in conventional and renewable energy resources. Despite the massive potential of energy resources, Pakistan is still an energy deficient country and have to import petroleum products to barely accomplish its energy demand. Geothermal energy is still one of the unexplored energy resources for electric power generation in Pakistan. Pakistan can overcome the energy shortage to a significant level by harnessing renewable energy resources, such as, geothermal energy. Majority of the geothermal hot springs and mud volcanoes exists within the seismic belt of Pakistan. Therefore, the country has viable geothermal energy manifestations. Several hot springs in Gilgit and Hunza region are originated due to the collision of Indian Plate with Eurasian Plate. Similarly, various geothermal reservoirs exist in Northeast to Southeast narrow belt along Indus basin margin. The survey discusses the current energy crisis in Pakistan and addresses the role of geothermal energy for the economic development of Pakistan. We served the manifestation and geographies of geologically active zones of Pakistan, like fault lines, plate tectonics, belt, and tectonic thrust, cleanest, base load, reliable, renewable, and sustainable geothermal energy resources. In our work, the hot springs and mud volcanoes of geologically active areas in maps are enlisted in Tables with potential features. The schemes used for extraction of geothermal energy for electric power generation are also investigated. The global electric power production from geothermal energy is visualized and discussed. Moreover, the suitable moderate temperature Binary Cycle Geothermal Power Plant for electric power generation in Pakistan is also described in detail. Furthermore, geothermal plants are experimentally summarized in different case studies. Finally the performance of geothermal and conventional thermal plants is critically analysed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Saif Ul Islam; Kamran Zeb; Soobae Kim;doi: 10.3390/su141912251
This article demonstrates a new topology for optimization of the electrical variables and enhancement of low-voltage-ride-through (LVRT) capacity of a grid-tied photovoltaic system (PS) during asymmetrical faults. The proposed topology comprises a fuzzy-logic controller (FLC) based on gradient descent (GD) optimization in association with parallel-resonance-type fault current limiter (PRFCL) as an LVRT circuitry. Gradient descent is an iterative process to minimize the objective function by updating the variable in the opposite direction of the gradient of the objective function. The PRFCL optimizes the fault variables, specifically preventing voltage sag without any transitional spikes. A 100-kW detailed model of grid-tied PS is used in MATLAB/Simulink to analyze the response of the proposed topology at the point of common coupling (PCC) and PV side variables. A keen comparative study of the conventionally adopted proportional-integral (PI) controller in association with crowbar circuitry is carried out for the justification of the proposed topology. The simulation findings of the proposed topology authenticate the optimal response of variables in terms of stability, robustness, smoothness, and fault tolerance at both the grid side and the PV side.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141912251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Izhar Us Salam; Muhammad Yousif; Muhammad Numan; Kamran Zeb; Moatasim Billah;doi: 10.3390/en16165907
The integration of distributed generation (DG) into distribution networks introduces uncertainties that can substantially affect network reliability. It is crucial to implement appropriate measures to maintain reliability parameters within acceptable limits and ensure a stable power supply for consumers. This paper aims to optimize the location, size, and number of DG units to minimize active power losses and improve distribution System (DS) reliability while considering system operational constraints. To achieve this objective, multiple tests are conducted, and the particle swarm optimization (PSO) technique is implemented. The simulation studies are performed using the ETAP software 19.0.1 version, while the PSO algorithm is implemented in MATLAB R2018a. ETAP enables a comprehensive evaluation of the DG system’s performance, providing valuable insights into its effectiveness in reducing power losses and enhancing system reliability. The PSO algorithm in MATLAB ensures accurate optimization, facilitating the identification of the optimal DG unit location and size. This study uses a modified IEEE-13 bus unbalanced radial DS as the test system, assessing the effects of photovoltaic (PV) and wind DG units under various scenarios and penetration levels. The results demonstrate that the optimal DG unit location and size of either a single PV or wind DG unit significantly reduce power losses, improve DS reliability, and enable effective load sharing with the substation. Moreover, this study analyzes the impact of DG unit uncertainty on system performance. The findings underscore the potential of optimized DG integration to enhance DS efficiency and reliability in the presence of renewable energy sources.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/16/5907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16165907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Muhammad Umair Ali; Sarvar Hussain Nengroo; Muhamad Adil Khan; Kamran Zeb; Muhammad Ahmad Kamran; Hee-Je Kim;doi: 10.3390/en11051122
The lithium-ion battery has high energy and power density, long life cycle, low toxicity, low discharge rate, more reliability, and better efficiency compared to other batteries. On the other hand, the issue of a reduction in charging time of the lithium-ion battery is still a bottleneck for the commercialization of electric vehicles (EVs). Therefore, an approach to charge lithium-ion batteries at a faster rate is needed. This paper proposes an efficient, real-time, fast-charging methodology of lithium-ion batteries. Fuzzy logic was adopted to drive the charging current trajectory. A temperature control unit was also implemented to evade the effects of fast charging on the aging mechanism. The proposed method of charging also protects the battery from overvoltage and overheating. Extensive testing and comprehensive analysis were conducted to examine the proposed charging technique. The results show that the proposed charging strategy favors a full battery recharging in 9.76% less time than the conventional constant-current–constant-voltage (CC/CV) method. The strategy charges the battery at a 99.26% state of charge (SOC) without significant degradation. The entire scheme was implemented in real time, using Arduino interfaced with MATLABTM Simulink. This decrease in charging time assists in the fast charging of cell phones and notebooks and in the large-scale deployment of EVs.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1122/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1122/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Saiful Islam; Muhammad Ishfaq; Gwan-Soo Park; Aun Haider; Imran Khan; Kamran Zeb; Waqar Uddin; Nadia Zeb; Ayesha Tanoli; Hee-Je Kim;doi: 10.3390/en12193653
In this paper, a model reference controller (MRC) based on a neural network (NN) is proposed for damping oscillations in electric power systems. Variation in reactive load, internal or external perturbation/faults, and asynchronization of the connected machine cause oscillations in power systems. If the oscillation is not damped properly, it will lead to a complete collapse of the power system. An MRC base unified power flow controller (UPFC) is proposed to mitigate the oscillations in 2-area, 4-machine interconnected power systems. The MRC controller is using the NN for training, as well as for plant identification. The proposed NN-based MRC controller is capable of damping power oscillations; hence, the system acquires a stable condition. The response of the proposed MRC is compared with the traditionally used proportional integral (PI) controller to validate its performance. The key performance indicator integral square error (ISE) and integral absolute error (IAE) of both controllers is calculated for single phase, two phase, and three phase faults. MATLAB/Simulink is used to implement and simulate the 2-area, 4-machine power system.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3653/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/19/3653/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Kamran Zeb; Tiago Davi Curi Busarello; Saif Ul Islam; Waqar Uddin; Kummara Venkata Guru Raghavendra; Muhammad Adil Khan; Hee-Je Kim;doi: 10.3390/en13153773
The novelty behind the research in this paper is to investigate the Super Twisting Sliding Mode Controller (ST-SMC) for efficiently injecting both active and reactive power under normal and abnormal operating conditions for a three-phase grid-connected photovoltaic (PV) system. The ST-SMC is aimed to inject sinusoidal current to the grid with low Total Harmonic Distortion (THD), to avoid chattering with easy real implementation, and to enhance the quality of disturbance rejection and sensitivity to parameter variation. The test under normal conditions includes initialization, steady state behavior, dynamic behavior, and interrupting the injection of acting and reactive power while the abnormal conditions consists of voltage sag, voltage swell, frequency variation, DC-link variation, and inclusion of 5th harmonics, etc. The phase lock loop used for synchronization is based on a synchronous reference frame that works well under distorted grids and nonideal. Automatic code is generated in PSIM 9.1 for hardware implementation in the DSP board TMS32F28335 from Texas Instruments while code composer studio 6.2.0 is used for debugging. The real time testing is executed using Typhoon Hardware in Loop (HIL) 402 device on the DSP board. The results authenticate the fastness, effectiveness, and robustness for both steady state and dynamic behavior under various scenarios of the designed controller.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Imran Khan; Kamran Zeb; Waqar Ud Din; Saif Ul Islam; Muhammad Ishfaq; Sadam Hussain; Hee-Je Kim;doi: 10.3390/en12030454
High penetration of large capacity wind turbines into power grid has led to serious concern about its influence on the dynamic behaviors of the power system. Unbalanced grid voltage causing DC-voltage fluctuations and DC-link capacitor large harmonic current which results in degrading reliability and lifespan of capacitor used in voltage source converter. Furthermore, due to magnetic saturation in the generator and non-linear loads distorted active and reactive power delivered to the grid, violating grid code. This paper provides a detailed investigation of dynamic behavior and transient characteristics of Doubly Fed Induction Generator (DFIG) during grid faults and voltage sags. It also presents novel grid side controllers, Adaptive Proportional Integral Controller (API) and Proportional Resonant with Resonant Harmonic Compensator (PR+RHC) which eliminate the negative impact of unbalanced grid voltage on the DC-capacitor as well as achieving harmonic filtering by compensating harmonics which improve power quality. Proposed algorithm focuses on mitigation of harmonic currents and voltage fluctuation in DC-capacitor making capacitor more reliable under transient grid conditions as well as distorted active and reactive power delivered to the electric grid. MATLAB/Simulink simulation of 2 MW DFIG model with 1150 V DC-linked voltage has been considered for validating the effectiveness of proposed control algorithms. The proposed controllers performance authenticates robust, ripples free, and fault-tolerant capability. In addition, performance indices and Total Harmonic Distortions (THD) are also calculated to verify the robustness of the designed controller.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/454/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/454/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Kamran Zeb; Waqar U. Din; Muhammad Adil Khan; Ayesha Khan; Umair Younas; Tiago Davi Curi Busarello; Hee Je Kim;doi: 10.3390/en11092339
Recently, the Indirect Field Oriented Control (IFOC) scheme for Induction Motors (IM) has gained wide acceptance in high performance applications. The IFOC has remarkable characteristics of decoupling torque and flux along with an easy hardware implementation. However, the detuning limits the performance of drives due to uncertainties of parameters. Conventionally, the use of a Proportional Integral Differential (PID) controller has been very frequent in variable speed drive applications. However, it does not allow for the operation of an IM in a wide range of speeds. In order to tackle these problems, optimal, robust, and adaptive control algorithms are mostly in use. The work presented in this paper is based on new optimal, robust, and adaptive control strategies, including an Adaptive Proportional Integral (PI) controller, sliding mode control, Fuzzy Logic (FL) control based on Steepest Descent (SD), Levenberg-Marquardt (LM) algorithms, and Hybrid Control (HC) or adaptive sliding mode controller to overcome the deficiency of conventional control strategies. The main theme is to design a robust control scheme having faster dynamic response, reliable operation for parameter uncertainties and speed variation, and maximized torque and efficiency of the IM. The test bench of the IM control has three main parts: IM model, Inverter Model, and control structure. The IM is modelled in synchronous frame using d q modelling while the Space Vector Pulse Width Modulation (SVPWM) technique is used for modulation of the inverter. Our proposed controllers are critically analyzed and compared with the PI controller considering different conditions: parameter uncertainties, speed variation, load disturbances, and under electrical faults. In addition, the results validate the effectiveness of the designed controllers and are then related to former works.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2339/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu