- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009 NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedDavid W. Fahey; John S. Daniel; Mack McFarland; Guus J. M. Velders; Stephen O. Andersen;The consumption and emissions of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation of ozone depleting gases under the Montreal Protocol. The projected increases result primarily from sustained growth in demand for refrigeration, air-conditioning (AC) and insulating foam products in developing countries assuming no new regulation of HFC consumption or emissions. New HFC scenarios are presented based on current hydrochlorofluorocarbon (HCFC) consumption in leading applications, patterns of replacements of HCFCs by HFCs in developed countries, and gross domestic product (GDP) growth. Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9–19% (CO 2 -eq. basis) of projected global CO 2 emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6–13 years of CO 2 emissions near 2050. This percentage increases to 28–45% compared with projected CO 2 emissions in a 450-ppm CO 2 stabilization scenario. In a hypothetical scenario based on a global cap followed by 4% annual reductions in consumption, HFC radiative forcing is shown to peak and begin to decline before 2050.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedDavid W. Fahey; John S. Daniel; Mack McFarland; Guus J. M. Velders; Stephen O. Andersen;The consumption and emissions of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation of ozone depleting gases under the Montreal Protocol. The projected increases result primarily from sustained growth in demand for refrigeration, air-conditioning (AC) and insulating foam products in developing countries assuming no new regulation of HFC consumption or emissions. New HFC scenarios are presented based on current hydrochlorofluorocarbon (HCFC) consumption in leading applications, patterns of replacements of HCFCs by HFCs in developed countries, and gross domestic product (GDP) growth. Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9–19% (CO 2 -eq. basis) of projected global CO 2 emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6–13 years of CO 2 emissions near 2050. This percentage increases to 28–45% compared with projected CO 2 emissions in a 450-ppm CO 2 stabilization scenario. In a hypothetical scenario based on a global cap followed by 4% annual reductions in consumption, HFC radiative forcing is shown to peak and begin to decline before 2050.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Germany, United Kingdom, United States, United KingdomPublisher:American Meteorological Society Eyring, V.; Harris, N. R. P; Rex, M.; Shepherd, T. G; Fahey, D. W; Amanatidis, G. T; Austin, J.; Chipperfield, M. P; Dameris, M.; Forster, P. M. De F; Gettelman, A.; Graf, H. F; Nagashima, T.; Newman, P. A; Pawson, S.; Prather, M. J; Pyle, J. A; Salawitch, R. J; Santer, B. D; Waugh, D. W;Evaluating CCMs with the presented framework will increase our confidence in predictions of stratospheric ozone change.
CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 125 citations 125 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Germany, United Kingdom, United States, United KingdomPublisher:American Meteorological Society Eyring, V.; Harris, N. R. P; Rex, M.; Shepherd, T. G; Fahey, D. W; Amanatidis, G. T; Austin, J.; Chipperfield, M. P; Dameris, M.; Forster, P. M. De F; Gettelman, A.; Graf, H. F; Nagashima, T.; Newman, P. A; Pawson, S.; Prather, M. J; Pyle, J. A; Salawitch, R. J; Santer, B. D; Waugh, D. W;Evaluating CCMs with the presented framework will increase our confidence in predictions of stratospheric ozone change.
CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 125 citations 125 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 GermanyPublisher:Elsevier BV Lee, David S.; Fahey, David W.; Forster, Piers M.; Newton, Peter J.; Wit, Ron C.N.; Lim, Ling L.; Owen, Bethan; Sausen, Robert;Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NO x ), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr-1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000-2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ∼55 mW m-2 (23-87 mW m-2, 90% likelihood range), which was 3.5% (range 1.3-10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005-78 mW m-2 (38-139 mW m-2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2-14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7-3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0-4.0 over the 2000 value, representing 4-4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.
Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 842 citations 842 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 GermanyPublisher:Elsevier BV Lee, David S.; Fahey, David W.; Forster, Piers M.; Newton, Peter J.; Wit, Ron C.N.; Lim, Ling L.; Owen, Bethan; Sausen, Robert;Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NO x ), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr-1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000-2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ∼55 mW m-2 (23-87 mW m-2, 90% likelihood range), which was 3.5% (range 1.3-10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005-78 mW m-2 (38-139 mW m-2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2-14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7-3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0-4.0 over the 2000 value, representing 4-4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.
Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 842 citations 842 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Velders, Guus J.M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack;Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0–5.3 GtCO2-eq yr−1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40–58%) and stationary air conditioning (21–40%) are the major use sectors. The corresponding radiative forcing could reach 0.22–0.25 W m−2 in 2050, which would be 12–24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.
Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 112 citations 112 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Velders, Guus J.M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack;Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0–5.3 GtCO2-eq yr−1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40–58%) and stationary air conditioning (21–40%) are the major use sectors. The corresponding radiative forcing could reach 0.22–0.25 W m−2 in 2050, which would be 12–24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.
Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 112 citations 112 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:IOP Publishing Robert W. Portmann; Karen H. Rosenlof; A. R. Ravishankara; Amy H. Butler; Amy H. Butler; Paul Young; David W. Fahey; John S. Daniel;Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:IOP Publishing Robert W. Portmann; Karen H. Rosenlof; A. R. Ravishankara; Amy H. Butler; Amy H. Butler; Paul Young; David W. Fahey; John S. Daniel;Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Ben R. Miller; Ben R. Miller; C. Siso; C. Siso; Lei Hu; Lei Hu; Stephen A. Montzka; B. D. Hall; Mack McFarland; James W. Elkins; David W. Fahey; Stephen O. Andersen;doi: 10.1021/jp5097376
pmid: 25405363
Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Ben R. Miller; Ben R. Miller; C. Siso; C. Siso; Lei Hu; Lei Hu; Stephen A. Montzka; B. D. Hall; Mack McFarland; James W. Elkins; David W. Fahey; Stephen O. Andersen;doi: 10.1021/jp5097376
pmid: 25405363
Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009 NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedDavid W. Fahey; John S. Daniel; Mack McFarland; Guus J. M. Velders; Stephen O. Andersen;The consumption and emissions of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation of ozone depleting gases under the Montreal Protocol. The projected increases result primarily from sustained growth in demand for refrigeration, air-conditioning (AC) and insulating foam products in developing countries assuming no new regulation of HFC consumption or emissions. New HFC scenarios are presented based on current hydrochlorofluorocarbon (HCFC) consumption in leading applications, patterns of replacements of HCFCs by HFCs in developed countries, and gross domestic product (GDP) growth. Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9–19% (CO 2 -eq. basis) of projected global CO 2 emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6–13 years of CO 2 emissions near 2050. This percentage increases to 28–45% compared with projected CO 2 emissions in a 450-ppm CO 2 stabilization scenario. In a hypothetical scenario based on a global cap followed by 4% annual reductions in consumption, HFC radiative forcing is shown to peak and begin to decline before 2050.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedDavid W. Fahey; John S. Daniel; Mack McFarland; Guus J. M. Velders; Stephen O. Andersen;The consumption and emissions of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation of ozone depleting gases under the Montreal Protocol. The projected increases result primarily from sustained growth in demand for refrigeration, air-conditioning (AC) and insulating foam products in developing countries assuming no new regulation of HFC consumption or emissions. New HFC scenarios are presented based on current hydrochlorofluorocarbon (HCFC) consumption in leading applications, patterns of replacements of HCFCs by HFCs in developed countries, and gross domestic product (GDP) growth. Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9–19% (CO 2 -eq. basis) of projected global CO 2 emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6–13 years of CO 2 emissions near 2050. This percentage increases to 28–45% compared with projected CO 2 emissions in a 450-ppm CO 2 stabilization scenario. In a hypothetical scenario based on a global cap followed by 4% annual reductions in consumption, HFC radiative forcing is shown to peak and begin to decline before 2050.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2009 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0902817106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Germany, United Kingdom, United States, United KingdomPublisher:American Meteorological Society Eyring, V.; Harris, N. R. P; Rex, M.; Shepherd, T. G; Fahey, D. W; Amanatidis, G. T; Austin, J.; Chipperfield, M. P; Dameris, M.; Forster, P. M. De F; Gettelman, A.; Graf, H. F; Nagashima, T.; Newman, P. A; Pawson, S.; Prather, M. J; Pyle, J. A; Salawitch, R. J; Santer, B. D; Waugh, D. W;Evaluating CCMs with the presented framework will increase our confidence in predictions of stratospheric ozone change.
CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 125 citations 125 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2005 Germany, United Kingdom, United States, United KingdomPublisher:American Meteorological Society Eyring, V.; Harris, N. R. P; Rex, M.; Shepherd, T. G; Fahey, D. W; Amanatidis, G. T; Austin, J.; Chipperfield, M. P; Dameris, M.; Forster, P. M. De F; Gettelman, A.; Graf, H. F; Nagashima, T.; Newman, P. A; Pawson, S.; Prather, M. J; Pyle, J. A; Salawitch, R. J; Santer, B. D; Waugh, D. W;Evaluating CCMs with the presented framework will increase our confidence in predictions of stratospheric ozone change.
CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 125 citations 125 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2005License: CC BYFull-Text: https://escholarship.org/uc/item/9rz4d8tvData sources: Bielefeld Academic Search Engine (BASE)Central Archive at the University of ReadingArticleData sources: Central Archive at the University of ReadingeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2005Data sources: Electronic Publication Information CenterBulletin of the American Meteorological SocietyArticle . 2005 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-86-8-1117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 GermanyPublisher:Elsevier BV Lee, David S.; Fahey, David W.; Forster, Piers M.; Newton, Peter J.; Wit, Ron C.N.; Lim, Ling L.; Owen, Bethan; Sausen, Robert;Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NO x ), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr-1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000-2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ∼55 mW m-2 (23-87 mW m-2, 90% likelihood range), which was 3.5% (range 1.3-10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005-78 mW m-2 (38-139 mW m-2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2-14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7-3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0-4.0 over the 2000 value, representing 4-4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.
Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 842 citations 842 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 GermanyPublisher:Elsevier BV Lee, David S.; Fahey, David W.; Forster, Piers M.; Newton, Peter J.; Wit, Ron C.N.; Lim, Ling L.; Owen, Bethan; Sausen, Robert;Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NO x ), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr-1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000-2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ∼55 mW m-2 (23-87 mW m-2, 90% likelihood range), which was 3.5% (range 1.3-10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005-78 mW m-2 (38-139 mW m-2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2-14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7-3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0-4.0 over the 2000 value, representing 4-4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.
Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 842 citations 842 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down DLR publication serverArticle . 2009 . Peer-reviewedFull-Text: https://elib.dlr.de/59761/1/lee.pdfData sources: DLR publication serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2009.04.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Velders, Guus J.M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack;Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0–5.3 GtCO2-eq yr−1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40–58%) and stationary air conditioning (21–40%) are the major use sectors. The corresponding radiative forcing could reach 0.22–0.25 W m−2 in 2050, which would be 12–24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.
Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 112 citations 112 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Velders, Guus J.M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack;Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0–5.3 GtCO2-eq yr−1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40–58%) and stationary air conditioning (21–40%) are the major use sectors. The corresponding radiative forcing could reach 0.22–0.25 W m−2 in 2050, which would be 12–24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.
Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 112 citations 112 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Atmospheric Environm... arrow_drop_down Web-based Archive of RIVM PublicationsArticle . 2015Data sources: Web-based Archive of RIVM Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.10.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:IOP Publishing Robert W. Portmann; Karen H. Rosenlof; A. R. Ravishankara; Amy H. Butler; Amy H. Butler; Paul Young; David W. Fahey; John S. Daniel;Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:IOP Publishing Robert W. Portmann; Karen H. Rosenlof; A. R. Ravishankara; Amy H. Butler; Amy H. Butler; Paul Young; David W. Fahey; John S. Daniel;Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/6/064017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Ben R. Miller; Ben R. Miller; C. Siso; C. Siso; Lei Hu; Lei Hu; Stephen A. Montzka; B. D. Hall; Mack McFarland; James W. Elkins; David W. Fahey; Stephen O. Andersen;doi: 10.1021/jp5097376
pmid: 25405363
Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Ben R. Miller; Ben R. Miller; C. Siso; C. Siso; Lei Hu; Lei Hu; Stephen A. Montzka; B. D. Hall; Mack McFarland; James W. Elkins; David W. Fahey; Stephen O. Andersen;doi: 10.1021/jp5097376
pmid: 25405363
Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry AArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefThe Journal of Physical Chemistry AArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp5097376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu