- home
- Advanced Search
Filters
Year range
-chevron_right GOSDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Guizhen Guo; Dandan Wang; Zhoupeng Ren; Qian Yin; Yunbing Gao;Understanding the spatiotemporal trends of temperature in the context of global warming is significant for public health. Although many studies have examined changes in temperature and the impacts on human health over the past few decades in many regions, they have often been carried out in data-rich regions and have rarely considered acclimatization explicitly. The most frequent temperature (MFT) indicator provides us with the ability to solve this problem. MFT is defined as the longest period of temperature throughout the year to which a human is exposed and therefore acclimates. In this study, we propose a new method to estimate the number of heat exposure days from the perspective of temperature distribution and MFT, based on the daily mean temperature readings of 2142 weather stations in eight major climate zones in China over the past 20 years. This method can be used to calculate the number of heat exposure days in terms of heat-related mortality risk without the need for mortality data. We estimated the distribution and changes of annual mean temperature (AMT), minimum mortality temperature (MMT), and the number of heat exposure days in different climate zones in China. The AMT, MMT, and number of heat exposure days vary considerably across China. They all tend to decrease gradually from low to high latitudes. Heat exposure days are closely related to the risk of heat-related mortality. In addition, we utilized multiple linear regression (MLR) to analyze the association between the risk of heat-related mortality and the city and its climatic characteristics. Results showed that the number of heat exposure days, GDP per capita, urban population ratio, proportion of elderly population, and climate zone were found to modify the estimate on heat effect, with an R2 of 0.71. These findings will be helpful for the creation of public policies protecting against high-temperature-induced mortalities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12101294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12101294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Wenjie Zhang; Jimee Hwang; Hugh J. W. Sturrock; Xiao-Nong Zhou; Xiao-Nong Zhou; Xinyu Feng; Xinyu Feng; Duoquan Wang; Duoquan Wang; Aimin Ma; Aimin Ma; Dian Yang; Zhi-Gui Xia; Zhi-Gui Xia; Jinfeng Wang; Jinfeng Wang; Jinfeng Wang; Junfu Fan; Zhoupeng Ren; Adam Bennett;AbstractProjecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep20604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep20604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Springer Science and Business Media LLC Funded by:NHMRC | Advancing the assessment ...NHMRC| Advancing the assessment of environmental impacts on human healthHao Wang; Jun Yang; Maigeng Zhou; Jimin Sun; Qiyong Liu; Jinfeng Wang; Mengmeng Li; Peng Yin; Yuming Guo; De Li Liu; De Li Liu; Zhoupeng Ren; Chun-Quan Ou; Shilu Tong; Shilu Tong; Shilu Tong; Boguang Wang; Chunlin Zhang;AbstractRecent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2–3.3%) in the 2010s to 2.4% (0.4–4.1%) in the 2030 s and 5.5% (0.5–9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0–1.2%) and 3.6% (−0.5–7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21305-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 156 citations 156 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21305-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Jianxiong Hu; Guanhao He; Ruilin Meng; Weiwei Gong; Zhoupeng Ren; Heng Shi; Ziqiang Lin; Tao Liu; Fangfang Zeng; Peng Yin; Guoxia Bai; Mingfang Qin; Zhulin Hou; Xiaomei Dong; Chunliang Zhou; Zhuoma Pingcuo; Yize Xiao; Min Yu; Biao Huang; Xiaojun Xu; Lifeng Lin; Jianpeng Xiao; Jieming Zhong; Donghui Jin; Qinglong Zhao; Yajie Li; Cangjue Gama; Yiqing Xu; Lingshuang Lv; Weilin Zeng; Xing Li; Liying Luo; Maigeng Zhou; Cunrui Huang; Wenjun Ma;AbstractInjury poses heavy burden on public health, accounting for nearly 8% of all deaths globally, but little evidence on the role of climate change on injury exists. We collect data during 2013-2019 in six provinces of China to examine the effects of temperature on injury mortality, and to project future mortality burden attributable to temperature change driven by climate change based on the assumption of constant injury mortality and population scenario. The results show that a 0.50% (95% confident interval (CI): 0.13%–0.88%) increase of injury mortality risk for each 1 °C rise in daily temperature, with higher risk for intentional injury (1.13%, 0.55%–1.71%) than that for unintentional injury (0.40%, 0.04%–0.77%). Compared to the 2010s, total injury deaths attributable to temperature change in China would increase 156,586 (37,654–272,316) in the 2090 s under representative concentration pathways 8.5 scenario with the highest for transport injury (64,764, 8,517–115,743). Populations living in Western China, people aged 15–69 years, and male may suffer more injury mortality burden from increased temperature caused by climate change. Our findings may be informative for public health policy development to effectively adapt to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-35462-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-35462-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Yan Yang; Qiushi Qu; Yebing Fang; Chufu Mou; Limao Wang; Zhoupeng Ren;doi: 10.3390/en10030367
Understanding the spatial heterogeneity and driving force identification of energy-related CO2 emissions (ECEs) can help build consensus for mitigating CO2 emissions and designing appropriate policies. However, previous studies on ECEs that focus on both the global-regional scale and the interaction of factors have been seldom conducted. In this paper, ECE data from 143 countries from 1990 to 2014 were selected to analyze regional differences in ECE growth rates by using the coefficient of variation. Then a geographical detector was used to analyze the key determinant factors on ECE growth rates around the world and in eight types of regions. The results show that: (1) the ECE growth rate in the Organization for Economic Cooperation and Development (OECD) region is low and tended to decrease, while in the non-OECD region it is high and tended to increase; (2) the coefficient of variation and detection factor of ECE growth rates at a regional scale are higher than those at a global scale; (3) in terms of the key determinant factors, population growth rate, growth rate of per capita GDP, and energy intensity growth rate are the three key determinant factors of ECE growth rates in the OECD region and most of the non-OECD regions such as non-OECD European and Eurasian (NO-EE), Asia (NO-AS), non-OECD Americas (NO-AM). The key determinant factors in the African (NO-AF) region are population growth rates and natural gas carbon intensity growth rates. The key determinant factors of the Middle East (NO-ME) are population growth rate, coal carbon intensity growth rate and per capita GDP growth rate; (4) the determinant power of the detection factor, the population growth rate at the global scale and regional scale is the strongest, showing a significant spatial consistency. The determinant power of per capita GDP growth rate and energy intensity growth rate in the OECD region, respectively, rank second and third, also showing a spatial consistency. However, the carbon intensity growth rates of the three fossil fuels contribute little to the growth rate of ECEs, and their spatial coherence is weak; (5) from the perspective of the interaction of detection factors, six detection factors showed bilinear or non-linear enhancement at a global and a regional scale, and the determinant power of the interaction of factors was significantly enhanced; and (6) from the perspective of ecological detection, the growth rate of carbon intensity and the growth rate of natural gas carbon intensity at the global scale and NO-ME region are significantly stronger than other factors, with a significant difference in the spatial distribution of its incidence. Therefore, the OECD region should continue to reduce the growth of energy intensity, and develop alternative energy resources in the future, while those that are plagued by carbon emissions in non-OECD regions should pay more attention to the positive influence of lower population growth rates on reducing the growth rate of energy-related CO2 emissions. Reducing energy intensity growth rates and reducing, fossil energy consumption carbon intensity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Springer Science and Business Media LLC Junhuan Peng; Yong Ge; Yongze Song; Yongze Song; Zhoupeng Ren; Yilan Liao; Jinfeng Wang;Malaria is one of the most severe parasitic diseases in the world. Spatial distribution estimation of malaria and its future scenarios are important issues for malaria control and elimination. Furthermore, sophisticated nonlinear relationships for prediction between malaria incidence and potential variables have not been well constructed in previous research. This study aims to estimate these nonlinear relationships and predict future malaria scenarios in northern China.Nonlinear relationships between malaria incidence and predictor variables were constructed using a genetic programming (GP) method, to predict the spatial distributions of malaria under climate change scenarios. For this, the examples of monthly average malaria incidence were used in each county of northern China from 2004 to 2010. Among the five variables at county level, precipitation rate and temperature are used for projections, while elevation, water density index, and gross domestic product are held at their present-day values.Average malaria incidence was 0.107 ‰ per annum in northern China, with incidence characteristics in significant spatial clustering. A GP-based model fit the relationships with average relative error (ARE) = 8.127 % for training data (R(2) = 0.825) and 17.102 % for test data (R(2) = 0.532). The fitness of GP results are significantly improved compared with those by generalized additive models (GAM) and linear regressions. With the future precipitation rate and temperature conditions in Special Report on Emission Scenarios (SRES) family B1, A1B and A2 scenarios, spatial distributions and changes in malaria incidences in 2020, 2030, 2040 and 2050 were predicted and mapped.The GP method increases the precision of predicting the spatial distribution of malaria incidence. With the assumption of varied precipitation rate and temperature, and other variables controlled, the relationships between incidence and the varied variables appear sophisticated nonlinearity and spatially differentiation. Using the future fluctuated precipitation and the increased temperature, median malaria incidence in 2020, 2030, 2040 and 2050 would significantly increase that it might increase 19 to 29 % in 2020, but currently China is in the malaria elimination phase, indicating that the effective strategies and actions had been taken. While the mean incidences will not increase even reduce due to the incidence reduction in high-risk regions but the simultaneous expansion of the high-risk areas.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/20.500.11937/77045Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12936-016-1395-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/20.500.11937/77045Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12936-016-1395-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Tao Liu; Zhoupeng Ren; Yonghui Zhang; Baixiang Feng; Hualiang Lin; Jianpeng Xiao; Weilin Zeng; Xing Li; Zhihao Li; Shannon Rutherford; Yanjun Xu; Shao Lin; Philip C. Nasca; Yaodong Du; Jinfeng Wang; Cunrui Huang; Peng Jia; Wenjun Ma;(1) Background: Although the health effects of future climate change have been examined in previous studies, few have considered additive impacts of population expansion, ageing, and adaptation. We aimed to quantify the future heat-related years of life lost (YLLs) under different Representative Concentration Pathways (RCP) scenarios and global-scale General Circulation Models (GCMs), and further to examine relative contributions of population expansion, ageing, and adaptation on these projections. (2) Methods: We used downscaled and bias-corrected projections of daily temperature from 27 GCMs under RCP2.6, 4.5, and 8.5 scenarios to quantify the potential annual heat-related YLLs in Guangzhou, China in the 2030s, 2060s, and 2090s, compared to those in the 1980s as a baseline. We also explored the modification effects of a range of population expansion, ageing, and adaptation scenarios on the heat-related YLLs. (3) Results: Global warming, particularly under the RCP8.5 scenario, would lead to a substantial increase in the heat-related YLLs in the 2030s, 2060s, and 2090s for the majority of the GCMs. For the total population, the annual heat-related YLLs under the RCP8.5 in the 2030s, 2060s, and 2090s were 2.2, 7.0, and 11.4 thousand, respectively. The heat effects would be significantly exacerbated by rapid population expansion and ageing. However, substantial heat-related YLLs could be counteracted by the increased adaptation (75% for the total population and 20% for the elderly). (4) Conclusions: The rapid population expansion and ageing coinciding with climate change may present an important health challenge in China, which, however, could be partially counteracted by the increased adaptation of individuals.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph16030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph16030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Guizhen Guo; Dandan Wang; Zhoupeng Ren; Qian Yin; Yunbing Gao;Understanding the spatiotemporal trends of temperature in the context of global warming is significant for public health. Although many studies have examined changes in temperature and the impacts on human health over the past few decades in many regions, they have often been carried out in data-rich regions and have rarely considered acclimatization explicitly. The most frequent temperature (MFT) indicator provides us with the ability to solve this problem. MFT is defined as the longest period of temperature throughout the year to which a human is exposed and therefore acclimates. In this study, we propose a new method to estimate the number of heat exposure days from the perspective of temperature distribution and MFT, based on the daily mean temperature readings of 2142 weather stations in eight major climate zones in China over the past 20 years. This method can be used to calculate the number of heat exposure days in terms of heat-related mortality risk without the need for mortality data. We estimated the distribution and changes of annual mean temperature (AMT), minimum mortality temperature (MMT), and the number of heat exposure days in different climate zones in China. The AMT, MMT, and number of heat exposure days vary considerably across China. They all tend to decrease gradually from low to high latitudes. Heat exposure days are closely related to the risk of heat-related mortality. In addition, we utilized multiple linear regression (MLR) to analyze the association between the risk of heat-related mortality and the city and its climatic characteristics. Results showed that the number of heat exposure days, GDP per capita, urban population ratio, proportion of elderly population, and climate zone were found to modify the estimate on heat effect, with an R2 of 0.71. These findings will be helpful for the creation of public policies protecting against high-temperature-induced mortalities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12101294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/atmos12101294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Wenjie Zhang; Jimee Hwang; Hugh J. W. Sturrock; Xiao-Nong Zhou; Xiao-Nong Zhou; Xinyu Feng; Xinyu Feng; Duoquan Wang; Duoquan Wang; Aimin Ma; Aimin Ma; Dian Yang; Zhi-Gui Xia; Zhi-Gui Xia; Jinfeng Wang; Jinfeng Wang; Jinfeng Wang; Junfu Fan; Zhoupeng Ren; Adam Bennett;AbstractProjecting the distribution of malaria vectors under climate change is essential for planning integrated vector control activities for sustaining elimination and preventing reintroduction of malaria. In China, however, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of climate change on four dominant malaria vectors (An. dirus, An. minimus, An. lesteri and An. sinensis) using species distribution models for two future decades: the 2030 s and the 2050 s. Simulation-based estimates suggest that the environmentally suitable area (ESA) for An. dirus and An. minimus would increase by an average of 49% and 16%, respectively, under all three scenarios for the 2030 s, but decrease by 11% and 16%, respectively in the 2050 s. By contrast, an increase of 36% and 11%, respectively, in ESA of An. lesteri and An. sinensis, was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios. in the 2050 s. In total, we predict a substantial net increase in the population exposed to the four dominant malaria vectors in the decades of the 2030 s and 2050 s, considering land use changes and urbanization simultaneously. Strategies to achieve and sustain malaria elimination in China will need to account for these potential changes in vector distributions and receptivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep20604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep20604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Springer Science and Business Media LLC Funded by:NHMRC | Advancing the assessment ...NHMRC| Advancing the assessment of environmental impacts on human healthHao Wang; Jun Yang; Maigeng Zhou; Jimin Sun; Qiyong Liu; Jinfeng Wang; Mengmeng Li; Peng Yin; Yuming Guo; De Li Liu; De Li Liu; Zhoupeng Ren; Chun-Quan Ou; Shilu Tong; Shilu Tong; Shilu Tong; Boguang Wang; Chunlin Zhang;AbstractRecent studies have reported a variety of health consequences of climate change. However, the vulnerability of individuals and cities to climate change remains to be evaluated. We project the excess cause-, age-, region-, and education-specific mortality attributable to future high temperatures in 161 Chinese districts/counties using 28 global climate models (GCMs) under two representative concentration pathways (RCPs). To assess the influence of population ageing on the projection of future heat-related mortality, we further project the age-specific effect estimates under five shared socioeconomic pathways (SSPs). Heat-related excess mortality is projected to increase from 1.9% (95% eCI: 0.2–3.3%) in the 2010s to 2.4% (0.4–4.1%) in the 2030 s and 5.5% (0.5–9.9%) in the 2090 s under RCP8.5, with corresponding relative changes of 0.5% (0.0–1.2%) and 3.6% (−0.5–7.5%). The projected slopes are steeper in southern, eastern, central and northern China. People with cardiorespiratory diseases, females, the elderly and those with low educational attainment could be more affected. Population ageing amplifies future heat-related excess deaths 2.3- to 5.8-fold under different SSPs, particularly for the northeast region. Our findings can help guide public health responses to ameliorate the risk of climate change.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21305-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 156 citations 156 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21305-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Jianxiong Hu; Guanhao He; Ruilin Meng; Weiwei Gong; Zhoupeng Ren; Heng Shi; Ziqiang Lin; Tao Liu; Fangfang Zeng; Peng Yin; Guoxia Bai; Mingfang Qin; Zhulin Hou; Xiaomei Dong; Chunliang Zhou; Zhuoma Pingcuo; Yize Xiao; Min Yu; Biao Huang; Xiaojun Xu; Lifeng Lin; Jianpeng Xiao; Jieming Zhong; Donghui Jin; Qinglong Zhao; Yajie Li; Cangjue Gama; Yiqing Xu; Lingshuang Lv; Weilin Zeng; Xing Li; Liying Luo; Maigeng Zhou; Cunrui Huang; Wenjun Ma;AbstractInjury poses heavy burden on public health, accounting for nearly 8% of all deaths globally, but little evidence on the role of climate change on injury exists. We collect data during 2013-2019 in six provinces of China to examine the effects of temperature on injury mortality, and to project future mortality burden attributable to temperature change driven by climate change based on the assumption of constant injury mortality and population scenario. The results show that a 0.50% (95% confident interval (CI): 0.13%–0.88%) increase of injury mortality risk for each 1 °C rise in daily temperature, with higher risk for intentional injury (1.13%, 0.55%–1.71%) than that for unintentional injury (0.40%, 0.04%–0.77%). Compared to the 2010s, total injury deaths attributable to temperature change in China would increase 156,586 (37,654–272,316) in the 2090 s under representative concentration pathways 8.5 scenario with the highest for transport injury (64,764, 8,517–115,743). Populations living in Western China, people aged 15–69 years, and male may suffer more injury mortality burden from increased temperature caused by climate change. Our findings may be informative for public health policy development to effectively adapt to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-35462-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-35462-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Yan Yang; Qiushi Qu; Yebing Fang; Chufu Mou; Limao Wang; Zhoupeng Ren;doi: 10.3390/en10030367
Understanding the spatial heterogeneity and driving force identification of energy-related CO2 emissions (ECEs) can help build consensus for mitigating CO2 emissions and designing appropriate policies. However, previous studies on ECEs that focus on both the global-regional scale and the interaction of factors have been seldom conducted. In this paper, ECE data from 143 countries from 1990 to 2014 were selected to analyze regional differences in ECE growth rates by using the coefficient of variation. Then a geographical detector was used to analyze the key determinant factors on ECE growth rates around the world and in eight types of regions. The results show that: (1) the ECE growth rate in the Organization for Economic Cooperation and Development (OECD) region is low and tended to decrease, while in the non-OECD region it is high and tended to increase; (2) the coefficient of variation and detection factor of ECE growth rates at a regional scale are higher than those at a global scale; (3) in terms of the key determinant factors, population growth rate, growth rate of per capita GDP, and energy intensity growth rate are the three key determinant factors of ECE growth rates in the OECD region and most of the non-OECD regions such as non-OECD European and Eurasian (NO-EE), Asia (NO-AS), non-OECD Americas (NO-AM). The key determinant factors in the African (NO-AF) region are population growth rates and natural gas carbon intensity growth rates. The key determinant factors of the Middle East (NO-ME) are population growth rate, coal carbon intensity growth rate and per capita GDP growth rate; (4) the determinant power of the detection factor, the population growth rate at the global scale and regional scale is the strongest, showing a significant spatial consistency. The determinant power of per capita GDP growth rate and energy intensity growth rate in the OECD region, respectively, rank second and third, also showing a spatial consistency. However, the carbon intensity growth rates of the three fossil fuels contribute little to the growth rate of ECEs, and their spatial coherence is weak; (5) from the perspective of the interaction of detection factors, six detection factors showed bilinear or non-linear enhancement at a global and a regional scale, and the determinant power of the interaction of factors was significantly enhanced; and (6) from the perspective of ecological detection, the growth rate of carbon intensity and the growth rate of natural gas carbon intensity at the global scale and NO-ME region are significantly stronger than other factors, with a significant difference in the spatial distribution of its incidence. Therefore, the OECD region should continue to reduce the growth of energy intensity, and develop alternative energy resources in the future, while those that are plagued by carbon emissions in non-OECD regions should pay more attention to the positive influence of lower population growth rates on reducing the growth rate of energy-related CO2 emissions. Reducing energy intensity growth rates and reducing, fossil energy consumption carbon intensity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Springer Science and Business Media LLC Junhuan Peng; Yong Ge; Yongze Song; Yongze Song; Zhoupeng Ren; Yilan Liao; Jinfeng Wang;Malaria is one of the most severe parasitic diseases in the world. Spatial distribution estimation of malaria and its future scenarios are important issues for malaria control and elimination. Furthermore, sophisticated nonlinear relationships for prediction between malaria incidence and potential variables have not been well constructed in previous research. This study aims to estimate these nonlinear relationships and predict future malaria scenarios in northern China.Nonlinear relationships between malaria incidence and predictor variables were constructed using a genetic programming (GP) method, to predict the spatial distributions of malaria under climate change scenarios. For this, the examples of monthly average malaria incidence were used in each county of northern China from 2004 to 2010. Among the five variables at county level, precipitation rate and temperature are used for projections, while elevation, water density index, and gross domestic product are held at their present-day values.Average malaria incidence was 0.107 ‰ per annum in northern China, with incidence characteristics in significant spatial clustering. A GP-based model fit the relationships with average relative error (ARE) = 8.127 % for training data (R(2) = 0.825) and 17.102 % for test data (R(2) = 0.532). The fitness of GP results are significantly improved compared with those by generalized additive models (GAM) and linear regressions. With the future precipitation rate and temperature conditions in Special Report on Emission Scenarios (SRES) family B1, A1B and A2 scenarios, spatial distributions and changes in malaria incidences in 2020, 2030, 2040 and 2050 were predicted and mapped.The GP method increases the precision of predicting the spatial distribution of malaria incidence. With the assumption of varied precipitation rate and temperature, and other variables controlled, the relationships between incidence and the varied variables appear sophisticated nonlinearity and spatially differentiation. Using the future fluctuated precipitation and the increased temperature, median malaria incidence in 2020, 2030, 2040 and 2050 would significantly increase that it might increase 19 to 29 % in 2020, but currently China is in the malaria elimination phase, indicating that the effective strategies and actions had been taken. While the mean incidences will not increase even reduce due to the incidence reduction in high-risk regions but the simultaneous expansion of the high-risk areas.
Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/20.500.11937/77045Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12936-016-1395-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Curtin University: e... arrow_drop_down Curtin University: espaceArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/20.500.11937/77045Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12936-016-1395-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Tao Liu; Zhoupeng Ren; Yonghui Zhang; Baixiang Feng; Hualiang Lin; Jianpeng Xiao; Weilin Zeng; Xing Li; Zhihao Li; Shannon Rutherford; Yanjun Xu; Shao Lin; Philip C. Nasca; Yaodong Du; Jinfeng Wang; Cunrui Huang; Peng Jia; Wenjun Ma;(1) Background: Although the health effects of future climate change have been examined in previous studies, few have considered additive impacts of population expansion, ageing, and adaptation. We aimed to quantify the future heat-related years of life lost (YLLs) under different Representative Concentration Pathways (RCP) scenarios and global-scale General Circulation Models (GCMs), and further to examine relative contributions of population expansion, ageing, and adaptation on these projections. (2) Methods: We used downscaled and bias-corrected projections of daily temperature from 27 GCMs under RCP2.6, 4.5, and 8.5 scenarios to quantify the potential annual heat-related YLLs in Guangzhou, China in the 2030s, 2060s, and 2090s, compared to those in the 1980s as a baseline. We also explored the modification effects of a range of population expansion, ageing, and adaptation scenarios on the heat-related YLLs. (3) Results: Global warming, particularly under the RCP8.5 scenario, would lead to a substantial increase in the heat-related YLLs in the 2030s, 2060s, and 2090s for the majority of the GCMs. For the total population, the annual heat-related YLLs under the RCP8.5 in the 2030s, 2060s, and 2090s were 2.2, 7.0, and 11.4 thousand, respectively. The heat effects would be significantly exacerbated by rapid population expansion and ageing. However, substantial heat-related YLLs could be counteracted by the increased adaptation (75% for the total population and 20% for the elderly). (4) Conclusions: The rapid population expansion and ageing coinciding with climate change may present an important health challenge in China, which, however, could be partially counteracted by the increased adaptation of individuals.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph16030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph16030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu