- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Zinc Ion Batteries: Struc..., UKRI | Zinc Ion Batteries: Struc..., UKRI | B-DECENT: Breakthrough An...UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,UKRI| B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion BatteriesXuan Gao; Haoyu Wu; Chang Su; Chuanming Lu; Yuhang Dai; Siyu Zhao; Xueying Hu; Fangjia Zhao; Wei Zhang; Ivan P. Parkin; Claire J. Carmalt; Guanjie He;doi: 10.1039/d2ee03719j
The latest progress of carbon-based materials for multivalent-ion hybrid capacitors (MIHCs) is reviewed. The energy storage mechanisms, electrochemical behaviors, material design strategies, and future research prospects are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03719j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03719j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Australia, AustraliaPublisher:Wiley Funded by:UKRI | ADVANCED FLOW TECHNOLOGY ..., UKRI | DTA - University College ..., ARC | Discovery Projects - Gran... +1 projectsUKRI| ADVANCED FLOW TECHNOLOGY FOR HEALTHCARE MATERIALS MANUFACTURING ,UKRI| DTA - University College London ,ARC| Discovery Projects - Grant ID: DP160101301 ,ARC| Discovery Projects - Grant ID: DP150101354Authors: Munkhbayar Batmunkh; Thomas J. Macdonald; William J. Peveler; Abdulaziz S. R. Bati; +3 AuthorsMunkhbayar Batmunkh; Thomas J. Macdonald; William J. Peveler; Abdulaziz S. R. Bati; Claire J. Carmalt; Ivan P. Parkin; Joseph G. Shapter;AbstractIncorporating appropriate plasmonic nanostructures into photovoltaic (PV) systems is of great utility for enhancing photon absorption and thus improving device performance. Herein, the successful integration of plasmonic gold nanostars (AuNSs) into mesoporous TiO2 photoelectrodes for perovskite solar cells (PSCs) is reported. The PSCs fabricated with TiO2‐AuNSs photoelectrodes exhibited a device efficiency of up to 17.72 %, whereas the control cells without AuNSs showed a maximum efficiency of 15.19 %. We attribute the origin of increased device performance to enhanced light absorption and suppressed charge recombination.
CORE arrow_drop_down EnlightenArticle . 2017Full-Text: http://eprints.gla.ac.uk/150491/3/150491.pdfData sources: CORE (RIOXX-UK Aggregator)Griffith University: Griffith Research OnlineArticle . 2017Full-Text: http://hdl.handle.net/10072/388168Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017Full-Text: http://eprints.gla.ac.uk/150491/3/150491.pdfData sources: CORE (RIOXX-UK Aggregator)Griffith University: Griffith Research OnlineArticle . 2017Full-Text: http://hdl.handle.net/10072/388168Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Zinc Ion Batteries: Struc..., UKRI | B-DECENT: Breakthrough An...UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,UKRI| B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion BatteriesXuan Gao; Chen Shen; Haobo Dong; Yuhang Dai; Peie Jiang; Ivan P. Parkin; Hongbin Zhang; Claire J. Carmalt; Guanjie He;doi: 10.1039/d3ee04492k
The proposed cathode, achieved by a cost-effective and scalable coating process, highlights the potential of simultaneously promoting surface reactivity while ensuring bulk stability for efficient high mass loading cathodes in zinc-ion batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee04492k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee04492k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Funded by:UKRI | B-DECENT: Breakthrough An..., UKRI | Zinc Ion Batteries: Struc...UKRI| B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion Batteries ,UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE)Xuan Gao; Haobo Dong; Chang Su; Yuhang Dai; Yiyang Liu; Ivan P. Parkin; Claire J. Carmalt; Guanjie He;doi: 10.1039/d4ee03483j
The payback period is a critical indicator when adopting energy storage systems. When developing optimization strategies for emerging energy storage technologies such as aqueous zinc-ion batteries, their economic feasibility should be considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03483j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03483j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:American Chemical Society (ACS) Authors: Mingyue Wang; Claire J. Carmalt;In recent decades, metal halide perovskites have attracted much attention after showing great potential in photovoltaic (PV) applications. With the rapid progress of perovskites, various thin-film ...
UCL Discovery arrow_drop_down ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UCL Discovery arrow_drop_down ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 United Kingdom, Germany, Germany, Switzerland, FrancePublisher:IOP Publishing Funded by:UKRI | Zinc Ion Batteries: Struc..., EC | POLYSTORAGE, EC | E-MAGICUKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,EC| POLYSTORAGE ,EC| E-MAGICM Rosa Palacin; Patrik Johansson; Robert Dominko; Ben Dlugatch; Doron Aurbach; Zhenyou Li; Maximilian Fichtner; Olivera Lužanin; Jan Bitenc; Zhixuan Wei; Clarissa Glaser; Jürgen Janek; Ana Fernández-Barquín; Aroa R Mainar; Olatz Leonet; Idoia Urdampilleta; J Alberto Blázquez; Deyana S Tchitchekova; Alexandre Ponrouch; Pieremanuele Canepa; Gopalakrishnan Sai Gautam; Raúl San Román Gallego Casilda; Cynthia S Martinez-Cisneros; Nieves Ureña Torres; Alejandro Varez; Jean-Yves Sanchez; Kostiantyn V Kravchyk; Maksym V Kovalenko; Anastasia A Teck; Huw Shiel; Ifan E L Stephens; Mary P Ryan; Eugen Zemlyanushin; Sonia Dsoke; Rebecca Grieco; Nagaraj Patil; Rebeca Marcilla; Xuan Gao; Claire J Carmalt; Guanjie He; Maria-Magdalena Titirici;Abstract Battery technologies based in multivalent charge carriers with ideally two or three electrons transferred per ion exchanged between the electrodes have large promises in raw performance numbers, most often expressed as high energy density, and are also ideally based on raw materials that are widely abundant and less expensive. Yet, these are still globally in their infancy, with some concepts (e.g. Mg metal) being more technologically mature. The challenges to address are derived on one side from the highly polarizing nature of multivalent ions when compared to single valent concepts such as Li+ or Na+ present in Li-ion or Na-ion batteries, and on the other, from the difficulties in achieving efficient metal plating/stripping (which remains the holy grail for lithium). Nonetheless, research performed to date has given some fruits and a clearer view of the challenges ahead. These include technological topics (production of thin and ductile metal foil anodes) but also chemical aspects (electrolytes with high conductivity enabling efficient plating/stripping) or high-capacity cathodes with suitable kinetics (better inorganic hosts for intercalation of such highly polarizable multivalent ions). This roadmap provides an extensive review by experts in the different technologies, which exhibit similarities but also striking differences, of the current state of the art in 2023 and the research directions and strategies currently underway to develop multivalent batteries. The aim is to provide an opinion with respect to the current challenges, potential bottlenecks, and also emerging opportunities for their practical deployment.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258243Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad34fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258243Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad34fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 United KingdomPublisher:Wiley Funded by:UKRI | Utilisation of Solar Ener...UKRI| Utilisation of Solar Energy and Electrocatalytic Processes for the Low Energy Conversion of CO2 to Fuels and ChemicalsQiushi Ruan; Wenjun Luo; Jijia Xie; Yiou Wang; Xu Liu; Zhiming Bai; Claire J. Carmalt; Junwang Tang;AbstractA metal‐free photoanode nanojunction architecture, composed of B‐doped carbon nitride nanolayer and bulk carbon nitride, was fabricated by a one‐step approach. This type of nanojunction (s‐BCN) overcomes a few intrinsic drawbacks of carbon nitride film (severe bulk charge recombination and slow charge transfer). The top layer of the nanojunction has a depth of ca. 100 nm and the bottom layer is ca. 900 nm. The nanojunction photoanode results into a 10‐fold higher photocurrent than bulk graphitic carbon nitride (G‐CN) photoanode, with a record photocurrent density of 103.2 μA cm−2 at 1.23 V vs. RHE under one sun irradiation and an extremely high incident photon‐to‐current efficiency (IPCE) of ca. 10 % at 400 nm. Electrochemical impedance spectroscopy, Mott–Schottky plots, and intensity‐modulated photocurrent spectroscopy show that such enhancement is mainly due to the mitigated deep trap states, a more than 10 times faster charge transfer rate and nearly three times higher conductivity due to the nanojunction architecture.
Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.201703372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu145 citations 145 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.201703372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | Zinc Ion Batteries: Struc...UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE)Authors: Xuan Gao; Haobo Dong; Claire J. Carmalt; Guanjie He;AbstractThe paper discusses the challenges associated with the performance of zinc‐ion batteries (ZIBs), such as side reactions that lead to reduced capacity and lifespan. The strategies for mitigating side reactions in ZIBs, including additives, electrolyte‐electrode interface modification, and electrolyte composition optimization, are explored. Combinations of these approaches may be necessary to achieve the best performance for ZIBs. However, continued research is needed to improve the commercial viability of ZIBs. Areas of research requiring attention include the understanding of the mechanisms behind side reactions in ZIBs and the development of cost‐effective and scalable manufacturing processes for ZIBs with available electrolyte. By developing effective strategies for mitigating side reactions, researchers can improve the efficiency and lifespan of ZIBs, making them more competitive with lithium‐ion batteries in various applications, including grid energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.202300200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.202300200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Zinc Ion Batteries: Struc..., UKRI | Zinc Ion Batteries: Struc..., UKRI | B-DECENT: Breakthrough An...UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,UKRI| B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion BatteriesXuan Gao; Haoyu Wu; Chang Su; Chuanming Lu; Yuhang Dai; Siyu Zhao; Xueying Hu; Fangjia Zhao; Wei Zhang; Ivan P. Parkin; Claire J. Carmalt; Guanjie He;doi: 10.1039/d2ee03719j
The latest progress of carbon-based materials for multivalent-ion hybrid capacitors (MIHCs) is reviewed. The energy storage mechanisms, electrochemical behaviors, material design strategies, and future research prospects are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03719j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee03719j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, Australia, AustraliaPublisher:Wiley Funded by:UKRI | ADVANCED FLOW TECHNOLOGY ..., UKRI | DTA - University College ..., ARC | Discovery Projects - Gran... +1 projectsUKRI| ADVANCED FLOW TECHNOLOGY FOR HEALTHCARE MATERIALS MANUFACTURING ,UKRI| DTA - University College London ,ARC| Discovery Projects - Grant ID: DP160101301 ,ARC| Discovery Projects - Grant ID: DP150101354Authors: Munkhbayar Batmunkh; Thomas J. Macdonald; William J. Peveler; Abdulaziz S. R. Bati; +3 AuthorsMunkhbayar Batmunkh; Thomas J. Macdonald; William J. Peveler; Abdulaziz S. R. Bati; Claire J. Carmalt; Ivan P. Parkin; Joseph G. Shapter;AbstractIncorporating appropriate plasmonic nanostructures into photovoltaic (PV) systems is of great utility for enhancing photon absorption and thus improving device performance. Herein, the successful integration of plasmonic gold nanostars (AuNSs) into mesoporous TiO2 photoelectrodes for perovskite solar cells (PSCs) is reported. The PSCs fabricated with TiO2‐AuNSs photoelectrodes exhibited a device efficiency of up to 17.72 %, whereas the control cells without AuNSs showed a maximum efficiency of 15.19 %. We attribute the origin of increased device performance to enhanced light absorption and suppressed charge recombination.
CORE arrow_drop_down EnlightenArticle . 2017Full-Text: http://eprints.gla.ac.uk/150491/3/150491.pdfData sources: CORE (RIOXX-UK Aggregator)Griffith University: Griffith Research OnlineArticle . 2017Full-Text: http://hdl.handle.net/10072/388168Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017Full-Text: http://eprints.gla.ac.uk/150491/3/150491.pdfData sources: CORE (RIOXX-UK Aggregator)Griffith University: Griffith Research OnlineArticle . 2017Full-Text: http://hdl.handle.net/10072/388168Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital RepositoryChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Zinc Ion Batteries: Struc..., UKRI | B-DECENT: Breakthrough An...UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,UKRI| B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion BatteriesXuan Gao; Chen Shen; Haobo Dong; Yuhang Dai; Peie Jiang; Ivan P. Parkin; Hongbin Zhang; Claire J. Carmalt; Guanjie He;doi: 10.1039/d3ee04492k
The proposed cathode, achieved by a cost-effective and scalable coating process, highlights the potential of simultaneously promoting surface reactivity while ensuring bulk stability for efficient high mass loading cathodes in zinc-ion batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee04492k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee04492k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Funded by:UKRI | B-DECENT: Breakthrough An..., UKRI | Zinc Ion Batteries: Struc...UKRI| B-DECENT: Breakthrough Anode-less Rechargeable Aqueous Zinc-ion Batteries ,UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE)Xuan Gao; Haobo Dong; Chang Su; Yuhang Dai; Yiyang Liu; Ivan P. Parkin; Claire J. Carmalt; Guanjie He;doi: 10.1039/d4ee03483j
The payback period is a critical indicator when adopting energy storage systems. When developing optimization strategies for emerging energy storage technologies such as aqueous zinc-ion batteries, their economic feasibility should be considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03483j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03483j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:American Chemical Society (ACS) Authors: Mingyue Wang; Claire J. Carmalt;In recent decades, metal halide perovskites have attracted much attention after showing great potential in photovoltaic (PV) applications. With the rapid progress of perovskites, various thin-film ...
UCL Discovery arrow_drop_down ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UCL Discovery arrow_drop_down ACS Applied Energy MaterialsArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsaem.1c02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 United Kingdom, Germany, Germany, Switzerland, FrancePublisher:IOP Publishing Funded by:UKRI | Zinc Ion Batteries: Struc..., EC | POLYSTORAGE, EC | E-MAGICUKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE) ,EC| POLYSTORAGE ,EC| E-MAGICM Rosa Palacin; Patrik Johansson; Robert Dominko; Ben Dlugatch; Doron Aurbach; Zhenyou Li; Maximilian Fichtner; Olivera Lužanin; Jan Bitenc; Zhixuan Wei; Clarissa Glaser; Jürgen Janek; Ana Fernández-Barquín; Aroa R Mainar; Olatz Leonet; Idoia Urdampilleta; J Alberto Blázquez; Deyana S Tchitchekova; Alexandre Ponrouch; Pieremanuele Canepa; Gopalakrishnan Sai Gautam; Raúl San Román Gallego Casilda; Cynthia S Martinez-Cisneros; Nieves Ureña Torres; Alejandro Varez; Jean-Yves Sanchez; Kostiantyn V Kravchyk; Maksym V Kovalenko; Anastasia A Teck; Huw Shiel; Ifan E L Stephens; Mary P Ryan; Eugen Zemlyanushin; Sonia Dsoke; Rebecca Grieco; Nagaraj Patil; Rebeca Marcilla; Xuan Gao; Claire J Carmalt; Guanjie He; Maria-Magdalena Titirici;Abstract Battery technologies based in multivalent charge carriers with ideally two or three electrons transferred per ion exchanged between the electrodes have large promises in raw performance numbers, most often expressed as high energy density, and are also ideally based on raw materials that are widely abundant and less expensive. Yet, these are still globally in their infancy, with some concepts (e.g. Mg metal) being more technologically mature. The challenges to address are derived on one side from the highly polarizing nature of multivalent ions when compared to single valent concepts such as Li+ or Na+ present in Li-ion or Na-ion batteries, and on the other, from the difficulties in achieving efficient metal plating/stripping (which remains the holy grail for lithium). Nonetheless, research performed to date has given some fruits and a clearer view of the challenges ahead. These include technological topics (production of thin and ductile metal foil anodes) but also chemical aspects (electrolytes with high conductivity enabling efficient plating/stripping) or high-capacity cathodes with suitable kinetics (better inorganic hosts for intercalation of such highly polarizable multivalent ions). This roadmap provides an extensive review by experts in the different technologies, which exhibit similarities but also striking differences, of the current state of the art in 2023 and the research directions and strategies currently underway to develop multivalent batteries. The aim is to provide an opinion with respect to the current challenges, potential bottlenecks, and also emerging opportunities for their practical deployment.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258243Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad34fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258243Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ad34fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 United KingdomPublisher:Wiley Funded by:UKRI | Utilisation of Solar Ener...UKRI| Utilisation of Solar Energy and Electrocatalytic Processes for the Low Energy Conversion of CO2 to Fuels and ChemicalsQiushi Ruan; Wenjun Luo; Jijia Xie; Yiou Wang; Xu Liu; Zhiming Bai; Claire J. Carmalt; Junwang Tang;AbstractA metal‐free photoanode nanojunction architecture, composed of B‐doped carbon nitride nanolayer and bulk carbon nitride, was fabricated by a one‐step approach. This type of nanojunction (s‐BCN) overcomes a few intrinsic drawbacks of carbon nitride film (severe bulk charge recombination and slow charge transfer). The top layer of the nanojunction has a depth of ca. 100 nm and the bottom layer is ca. 900 nm. The nanojunction photoanode results into a 10‐fold higher photocurrent than bulk graphitic carbon nitride (G‐CN) photoanode, with a record photocurrent density of 103.2 μA cm−2 at 1.23 V vs. RHE under one sun irradiation and an extremely high incident photon‐to‐current efficiency (IPCE) of ca. 10 % at 400 nm. Electrochemical impedance spectroscopy, Mott–Schottky plots, and intensity‐modulated photocurrent spectroscopy show that such enhancement is mainly due to the mitigated deep trap states, a more than 10 times faster charge transfer rate and nearly three times higher conductivity due to the nanojunction architecture.
Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.201703372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu145 citations 145 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.201703372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | Zinc Ion Batteries: Struc...UKRI| Zinc Ion Batteries: Structural ENgineering for Severe Environment (SENSE)Authors: Xuan Gao; Haobo Dong; Claire J. Carmalt; Guanjie He;AbstractThe paper discusses the challenges associated with the performance of zinc‐ion batteries (ZIBs), such as side reactions that lead to reduced capacity and lifespan. The strategies for mitigating side reactions in ZIBs, including additives, electrolyte‐electrode interface modification, and electrolyte composition optimization, are explored. Combinations of these approaches may be necessary to achieve the best performance for ZIBs. However, continued research is needed to improve the commercial viability of ZIBs. Areas of research requiring attention include the understanding of the mechanisms behind side reactions in ZIBs and the development of cost‐effective and scalable manufacturing processes for ZIBs with available electrolyte. By developing effective strategies for mitigating side reactions, researchers can improve the efficiency and lifespan of ZIBs, making them more competitive with lithium‐ion batteries in various applications, including grid energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.202300200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/celc.202300200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu