- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Hande Kayacık; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/4565
Abstract The role of BaO in the glassy structured Na2Si3O7 was investigated in the context of gamma radiations shielding parameters in the study. The mass attenuation coefficient, half layer value, and mean free path of the Na2Si3O7/BaO composites were calculated experimentally for the photons with the energies of 81 keV and 356 kev emitted from 133Ba point radioactive source. The same parameters were also calculated by Monte Carlo N-particle simulation (MCNP5) for the gamma photons which are emitted from 133Ba, 241Am, 99mTc, 177Lu, 192Ir, and 137Cs radioactive sources. The effective atomic number and effective electron density were determined by WinXCom software. Additionally, the scattered gamma photon intensity of the composites was realized for the energy of 364 keV and compared with the most utilized radiation shielding material lead. It was concluded that the composite having the highest BaO additive exhibits the best gamma photon absorption ability at all energies investigated.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Hande Kayacık; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/4565
Abstract The role of BaO in the glassy structured Na2Si3O7 was investigated in the context of gamma radiations shielding parameters in the study. The mass attenuation coefficient, half layer value, and mean free path of the Na2Si3O7/BaO composites were calculated experimentally for the photons with the energies of 81 keV and 356 kev emitted from 133Ba point radioactive source. The same parameters were also calculated by Monte Carlo N-particle simulation (MCNP5) for the gamma photons which are emitted from 133Ba, 241Am, 99mTc, 177Lu, 192Ir, and 137Cs radioactive sources. The effective atomic number and effective electron density were determined by WinXCom software. Additionally, the scattered gamma photon intensity of the composites was realized for the energy of 364 keV and compared with the most utilized radiation shielding material lead. It was concluded that the composite having the highest BaO additive exhibits the best gamma photon absorption ability at all energies investigated.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/7658
Abstract In the present work, the very low-cost glassy structured sodium silicate (Na2Si3O7) matrix has been reinforced with micro-and nano-sized silver (Ag) particles in different weight percentages. The ionizing radiation shielding performances of the micro and nano-structured composites have been determined experimentally and theoretically for the first time. The experiments have been realized by the gamma-ray spectroscopy setup equipped with NaI(Tl) detector and Ba-133 point radioactive source. The radiation shielding performance has been discussed in the context of mass attenuation coefficient ( μ / ρ ) half-value layer (HVL), and mean free path (MFP). Besides, the theoretical research related to the radiation shielding ability of the samples has been carried out by using the Monte Carlo N-Particle Transport (MCNP) v6.2© simulation code. Since the experimental values and MCNP findings are very close to each other, MCNP simulation has been extended to a large incoming photon energy interval ranging from 25 keV to 1000 keV for both micro-and nano-structured composites. The particle size effect (PSE) on radiation shielding performance has been investigated and discussed. As a result of PSE research, it has been revealed that the addition of nanoparticles is more effective in the improvement of the radiation shielding for the lowest Ag concentration and low photon energies. Additionally, the radiation shielding capability of the composites has been discussed in the context of ambient dose equivalent, H ∗ ( 10 ) which is one of the operational quantities. By using the ambient dose equivalent definition, the ambient dose rate values of the composites have been calculated for the first time. In conclusion, it has been determined the composites with higher micro-and nano-Ag particle additives have considerably good radiation shielding ability against low energy photons that are mostly utilized in diagnostic and treatment medical applications.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/7658
Abstract In the present work, the very low-cost glassy structured sodium silicate (Na2Si3O7) matrix has been reinforced with micro-and nano-sized silver (Ag) particles in different weight percentages. The ionizing radiation shielding performances of the micro and nano-structured composites have been determined experimentally and theoretically for the first time. The experiments have been realized by the gamma-ray spectroscopy setup equipped with NaI(Tl) detector and Ba-133 point radioactive source. The radiation shielding performance has been discussed in the context of mass attenuation coefficient ( μ / ρ ) half-value layer (HVL), and mean free path (MFP). Besides, the theoretical research related to the radiation shielding ability of the samples has been carried out by using the Monte Carlo N-Particle Transport (MCNP) v6.2© simulation code. Since the experimental values and MCNP findings are very close to each other, MCNP simulation has been extended to a large incoming photon energy interval ranging from 25 keV to 1000 keV for both micro-and nano-structured composites. The particle size effect (PSE) on radiation shielding performance has been investigated and discussed. As a result of PSE research, it has been revealed that the addition of nanoparticles is more effective in the improvement of the radiation shielding for the lowest Ag concentration and low photon energies. Additionally, the radiation shielding capability of the composites has been discussed in the context of ambient dose equivalent, H ∗ ( 10 ) which is one of the operational quantities. By using the ambient dose equivalent definition, the ambient dose rate values of the composites have been calculated for the first time. In conclusion, it has been determined the composites with higher micro-and nano-Ag particle additives have considerably good radiation shielding ability against low energy photons that are mostly utilized in diagnostic and treatment medical applications.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 TurkeyPublisher:Elsevier BV Merve Bozkurt; Nazlıcan Şahin; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir;Abstract The present study deals with determining the gamma-ray shielding parameters of the micro (μ)- Bi2O3, μ−WO3, nano (n)-Bi2O3, and n-WO3 reinforced Na2SiO3 (sodium metasilicate) composites experimentally and theoretically. The study has aimed to compare the size of reinforcing particles on the gamma-ray shielding ability of very low-cost and non-toxic Na2SiO3. In this context, the gamma-ray shielding performances of the samples containing different weight percentages of μ-Bi2O3, μ-WO3, n-Bi2O3, and n-WO3 particles have been evaluated by employing mass attenuation coefficient, half-value layer, and mean free path. The related parameters have been measured experimentally and also calculated by WinXCom. It has been revealed that Na2SiO3 composites having micro and nano-structured Bi2O3 and WO3 particles show good radiation shielding for 81 keV photons. In this respect, among all composites, the Na2SiO3/30% μ-WO3 sample has a promising potential to shield the ionizing radiation utilized in diagnostic imaging such as mammography, conventional X-ray machine, etc.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 TurkeyPublisher:Elsevier BV Merve Bozkurt; Nazlıcan Şahin; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir;Abstract The present study deals with determining the gamma-ray shielding parameters of the micro (μ)- Bi2O3, μ−WO3, nano (n)-Bi2O3, and n-WO3 reinforced Na2SiO3 (sodium metasilicate) composites experimentally and theoretically. The study has aimed to compare the size of reinforcing particles on the gamma-ray shielding ability of very low-cost and non-toxic Na2SiO3. In this context, the gamma-ray shielding performances of the samples containing different weight percentages of μ-Bi2O3, μ-WO3, n-Bi2O3, and n-WO3 particles have been evaluated by employing mass attenuation coefficient, half-value layer, and mean free path. The related parameters have been measured experimentally and also calculated by WinXCom. It has been revealed that Na2SiO3 composites having micro and nano-structured Bi2O3 and WO3 particles show good radiation shielding for 81 keV photons. In this respect, among all composites, the Na2SiO3/30% μ-WO3 sample has a promising potential to shield the ionizing radiation utilized in diagnostic imaging such as mammography, conventional X-ray machine, etc.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 TurkeyPublisher:American Scientific Publishers Alkan, Ümit; Kılıç, Mehmet; Karabul, Yaşar; Yamak, Hale Berber; Okutan, Mustafa; Icelli, Orhan;handle: 11363/7919
The thermal, mechanical and dielectric properties of Low Density Polyethylene/Polyaniline (LDPE/PANI) composites filled were investigated. LDPE/PANI composites were prepared using different weight percentage of PANI by compression molded in an electrically heated press. An objective of this study was to investigate dielectric and mechanical proprieties of LDPE/PANI composite films. The samples were characterized by Fourier-transform infrared spectroscopy analysis (FT-IR), tensile tests, thermogravimetry/differential thermogravimetry (TG/DTA) analysis and dielectric measurements. The FT-IR spectrum showed that PANI remained doped in the composite, and this improved the dielectric and mechanical proprieties of LDPE/PANI composite films. As compared to the mechanical and dielectric properties of pure LDPE, LDPE/0.7 wt% PANI composites have been found to have better mechanical and dielectric properties. The real (epsilon') and the imaginary parts (epsilon '') of the complex dielectric constant were measured in the frequency range of 100 Hz-10(6) Hz at room temperature (RT).
Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 TurkeyPublisher:American Scientific Publishers Alkan, Ümit; Kılıç, Mehmet; Karabul, Yaşar; Yamak, Hale Berber; Okutan, Mustafa; Icelli, Orhan;handle: 11363/7919
The thermal, mechanical and dielectric properties of Low Density Polyethylene/Polyaniline (LDPE/PANI) composites filled were investigated. LDPE/PANI composites were prepared using different weight percentage of PANI by compression molded in an electrically heated press. An objective of this study was to investigate dielectric and mechanical proprieties of LDPE/PANI composite films. The samples were characterized by Fourier-transform infrared spectroscopy analysis (FT-IR), tensile tests, thermogravimetry/differential thermogravimetry (TG/DTA) analysis and dielectric measurements. The FT-IR spectrum showed that PANI remained doped in the composite, and this improved the dielectric and mechanical proprieties of LDPE/PANI composite films. As compared to the mechanical and dielectric properties of pure LDPE, LDPE/0.7 wt% PANI composites have been found to have better mechanical and dielectric properties. The real (epsilon') and the imaginary parts (epsilon '') of the complex dielectric constant were measured in the frequency range of 100 Hz-10(6) Hz at room temperature (RT).
Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Hande Kayacık; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/4565
Abstract The role of BaO in the glassy structured Na2Si3O7 was investigated in the context of gamma radiations shielding parameters in the study. The mass attenuation coefficient, half layer value, and mean free path of the Na2Si3O7/BaO composites were calculated experimentally for the photons with the energies of 81 keV and 356 kev emitted from 133Ba point radioactive source. The same parameters were also calculated by Monte Carlo N-particle simulation (MCNP5) for the gamma photons which are emitted from 133Ba, 241Am, 99mTc, 177Lu, 192Ir, and 137Cs radioactive sources. The effective atomic number and effective electron density were determined by WinXCom software. Additionally, the scattered gamma photon intensity of the composites was realized for the energy of 364 keV and compared with the most utilized radiation shielding material lead. It was concluded that the composite having the highest BaO additive exhibits the best gamma photon absorption ability at all energies investigated.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Hande Kayacık; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/4565
Abstract The role of BaO in the glassy structured Na2Si3O7 was investigated in the context of gamma radiations shielding parameters in the study. The mass attenuation coefficient, half layer value, and mean free path of the Na2Si3O7/BaO composites were calculated experimentally for the photons with the energies of 81 keV and 356 kev emitted from 133Ba point radioactive source. The same parameters were also calculated by Monte Carlo N-particle simulation (MCNP5) for the gamma photons which are emitted from 133Ba, 241Am, 99mTc, 177Lu, 192Ir, and 137Cs radioactive sources. The effective atomic number and effective electron density were determined by WinXCom software. Additionally, the scattered gamma photon intensity of the composites was realized for the energy of 364 keV and compared with the most utilized radiation shielding material lead. It was concluded that the composite having the highest BaO additive exhibits the best gamma photon absorption ability at all energies investigated.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2019Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2019Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2019.103119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/7658
Abstract In the present work, the very low-cost glassy structured sodium silicate (Na2Si3O7) matrix has been reinforced with micro-and nano-sized silver (Ag) particles in different weight percentages. The ionizing radiation shielding performances of the micro and nano-structured composites have been determined experimentally and theoretically for the first time. The experiments have been realized by the gamma-ray spectroscopy setup equipped with NaI(Tl) detector and Ba-133 point radioactive source. The radiation shielding performance has been discussed in the context of mass attenuation coefficient ( μ / ρ ) half-value layer (HVL), and mean free path (MFP). Besides, the theoretical research related to the radiation shielding ability of the samples has been carried out by using the Monte Carlo N-Particle Transport (MCNP) v6.2© simulation code. Since the experimental values and MCNP findings are very close to each other, MCNP simulation has been extended to a large incoming photon energy interval ranging from 25 keV to 1000 keV for both micro-and nano-structured composites. The particle size effect (PSE) on radiation shielding performance has been investigated and discussed. As a result of PSE research, it has been revealed that the addition of nanoparticles is more effective in the improvement of the radiation shielding for the lowest Ag concentration and low photon energies. Additionally, the radiation shielding capability of the composites has been discussed in the context of ambient dose equivalent, H ∗ ( 10 ) which is one of the operational quantities. By using the ambient dose equivalent definition, the ambient dose rate values of the composites have been calculated for the first time. In conclusion, it has been determined the composites with higher micro-and nano-Ag particle additives have considerably good radiation shielding ability against low energy photons that are mostly utilized in diagnostic and treatment medical applications.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Elsevier BV Mustafa Çağlar; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir; Orhan İçelli;handle: 20.500.12511/7658
Abstract In the present work, the very low-cost glassy structured sodium silicate (Na2Si3O7) matrix has been reinforced with micro-and nano-sized silver (Ag) particles in different weight percentages. The ionizing radiation shielding performances of the micro and nano-structured composites have been determined experimentally and theoretically for the first time. The experiments have been realized by the gamma-ray spectroscopy setup equipped with NaI(Tl) detector and Ba-133 point radioactive source. The radiation shielding performance has been discussed in the context of mass attenuation coefficient ( μ / ρ ) half-value layer (HVL), and mean free path (MFP). Besides, the theoretical research related to the radiation shielding ability of the samples has been carried out by using the Monte Carlo N-Particle Transport (MCNP) v6.2© simulation code. Since the experimental values and MCNP findings are very close to each other, MCNP simulation has been extended to a large incoming photon energy interval ranging from 25 keV to 1000 keV for both micro-and nano-structured composites. The particle size effect (PSE) on radiation shielding performance has been investigated and discussed. As a result of PSE research, it has been revealed that the addition of nanoparticles is more effective in the improvement of the radiation shielding for the lowest Ag concentration and low photon energies. Additionally, the radiation shielding capability of the composites has been discussed in the context of ambient dose equivalent, H ∗ ( 10 ) which is one of the operational quantities. By using the ambient dose equivalent definition, the ambient dose rate values of the composites have been calculated for the first time. In conclusion, it has been determined the composites with higher micro-and nano-Ag particle additives have considerably good radiation shielding ability against low energy photons that are mostly utilized in diagnostic and treatment medical applications.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2021Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103855&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 TurkeyPublisher:Elsevier BV Merve Bozkurt; Nazlıcan Şahin; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir;Abstract The present study deals with determining the gamma-ray shielding parameters of the micro (μ)- Bi2O3, μ−WO3, nano (n)-Bi2O3, and n-WO3 reinforced Na2SiO3 (sodium metasilicate) composites experimentally and theoretically. The study has aimed to compare the size of reinforcing particles on the gamma-ray shielding ability of very low-cost and non-toxic Na2SiO3. In this context, the gamma-ray shielding performances of the samples containing different weight percentages of μ-Bi2O3, μ-WO3, n-Bi2O3, and n-WO3 particles have been evaluated by employing mass attenuation coefficient, half-value layer, and mean free path. The related parameters have been measured experimentally and also calculated by WinXCom. It has been revealed that Na2SiO3 composites having micro and nano-structured Bi2O3 and WO3 particles show good radiation shielding for 81 keV photons. In this respect, among all composites, the Na2SiO3/30% μ-WO3 sample has a promising potential to shield the ionizing radiation utilized in diagnostic imaging such as mammography, conventional X-ray machine, etc.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 TurkeyPublisher:Elsevier BV Merve Bozkurt; Nazlıcan Şahin; Yaşar Karabul; Mehmet Kılıç; Zeynep Güven Özdemir;Abstract The present study deals with determining the gamma-ray shielding parameters of the micro (μ)- Bi2O3, μ−WO3, nano (n)-Bi2O3, and n-WO3 reinforced Na2SiO3 (sodium metasilicate) composites experimentally and theoretically. The study has aimed to compare the size of reinforcing particles on the gamma-ray shielding ability of very low-cost and non-toxic Na2SiO3. In this context, the gamma-ray shielding performances of the samples containing different weight percentages of μ-Bi2O3, μ-WO3, n-Bi2O3, and n-WO3 particles have been evaluated by employing mass attenuation coefficient, half-value layer, and mean free path. The related parameters have been measured experimentally and also calculated by WinXCom. It has been revealed that Na2SiO3 composites having micro and nano-structured Bi2O3 and WO3 particles show good radiation shielding for 81 keV photons. In this respect, among all composites, the Na2SiO3/30% μ-WO3 sample has a promising potential to shield the ionizing radiation utilized in diagnostic imaging such as mammography, conventional X-ray machine, etc.
Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Nuclear ... arrow_drop_down Progress in Nuclear EnergyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefYildiz Technical University - AVESISArticle . 2022Data sources: Yildiz Technical University - AVESISadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.104058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 TurkeyPublisher:American Scientific Publishers Alkan, Ümit; Kılıç, Mehmet; Karabul, Yaşar; Yamak, Hale Berber; Okutan, Mustafa; Icelli, Orhan;handle: 11363/7919
The thermal, mechanical and dielectric properties of Low Density Polyethylene/Polyaniline (LDPE/PANI) composites filled were investigated. LDPE/PANI composites were prepared using different weight percentage of PANI by compression molded in an electrically heated press. An objective of this study was to investigate dielectric and mechanical proprieties of LDPE/PANI composite films. The samples were characterized by Fourier-transform infrared spectroscopy analysis (FT-IR), tensile tests, thermogravimetry/differential thermogravimetry (TG/DTA) analysis and dielectric measurements. The FT-IR spectrum showed that PANI remained doped in the composite, and this improved the dielectric and mechanical proprieties of LDPE/PANI composite films. As compared to the mechanical and dielectric properties of pure LDPE, LDPE/0.7 wt% PANI composites have been found to have better mechanical and dielectric properties. The real (epsilon') and the imaginary parts (epsilon '') of the complex dielectric constant were measured in the frequency range of 100 Hz-10(6) Hz at room temperature (RT).
Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 TurkeyPublisher:American Scientific Publishers Alkan, Ümit; Kılıç, Mehmet; Karabul, Yaşar; Yamak, Hale Berber; Okutan, Mustafa; Icelli, Orhan;handle: 11363/7919
The thermal, mechanical and dielectric properties of Low Density Polyethylene/Polyaniline (LDPE/PANI) composites filled were investigated. LDPE/PANI composites were prepared using different weight percentage of PANI by compression molded in an electrically heated press. An objective of this study was to investigate dielectric and mechanical proprieties of LDPE/PANI composite films. The samples were characterized by Fourier-transform infrared spectroscopy analysis (FT-IR), tensile tests, thermogravimetry/differential thermogravimetry (TG/DTA) analysis and dielectric measurements. The FT-IR spectrum showed that PANI remained doped in the composite, and this improved the dielectric and mechanical proprieties of LDPE/PANI composite films. As compared to the mechanical and dielectric properties of pure LDPE, LDPE/0.7 wt% PANI composites have been found to have better mechanical and dielectric properties. The real (epsilon') and the imaginary parts (epsilon '') of the complex dielectric constant were measured in the frequency range of 100 Hz-10(6) Hz at room temperature (RT).
Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Yildiz Technical Uni... arrow_drop_down Yildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISArticle . 2016Data sources: Yildiz Technical University - AVESISYildiz Technical University - AVESISConference object . 2015Data sources: Yildiz Technical University - AVESISIGU Institutional Open Access RepositoryArticle . 2024Data sources: IGU Institutional Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1166/jno.2016.1889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu