- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:Elsevier BV Georg A. Futter; Pawel Gazdzicki; K. Andreas Friedrich; Arnulf Latz; Thomas Jahnke;Abstract A transient 2D physical continuum-level model for analyzing polymer electrolyte membrane fuel cell (PEMFC) performance is developed and implemented into the new numerical framework NEOPARD-X. The model incorporates non-isothermal, compositional multiphase flow in both electrodes coupled to transport of water, protons and dissolved gaseous species in the polymer electrolyte membrane (PEM). Ionic and electrical charge transport is considered and a detailed model for the oxygen reduction reaction (ORR) combined with models for platinum oxide formation and oxygen transport in the ionomer thin-films of the catalyst layers (CLs) is applied. The model is validated by performance curves and impedance spectroscopic experiments, performed under various operating conditions, with a single set of parameters and used to study water management in co- and counter-flow operation. Based on electrochemical impedance spectra (EIS) simulations, the physical processes which govern the PEMFC performance are analyzed in detail. It is concluded that the contribution of diffusion through the porous electrodes to the overall cell impedance is minor, but concentration gradients along the channel have a strong impact. Inductive phenomena at low frequencies are identified from physics-based modeling. Induction is caused by humidity dependent ionomer properties and platinum oxide formation on the catalyst surface.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Spain, Spain, France, Spain, Germany, Spain, Germany, Italy, Germany, SpainPublisher:Elsevier BV Funded by:EC | PUMA MINDEC| PUMA MINDT. Kerber; Alejandro A. Franco; Alejandro A. Franco; Georgios Tsotridis; Wolfgang G. Bessler; Manik Mayur; M. Quinaud; Georg Futter; Matías Abel Oscar Quiroga; Matías Abel Oscar Quiroga; Federico Calle-Vallejo; Thomas Malkow; Philippe Sautet; Thomas Jahnke; Mathias Gerard; G. Papakonstantinou; David Loffreda; C. Kompis; Pascal Schott; Kourosh Malek; Cesare Pianese; Pierpaolo Polverino; Arnulf Latz; Maria Pina Serra; Stephan Strahl; R. Ferreira de Morais;handle: 10261/132951 , 11386/4663236 , 2117/86086
Proton Exchange Membrane Fuel Cells (PEMFC) are energy efficient and environmentally friendly alternatives to conventional energy conversion systems in many yet emerging applications. In order to enable prediction of their performance and durability, it is crucial to gain a deeper understanding of the relevant operation phenomena, e.g., electrochemistry, transport phenomena, thermodynamics as well as the mechanisms leading to the degradation of cell components. Achieving the goal of providing predictive tools to model PEMFC performance, durability and degradation is a challenging task requiring the development of detailed and realistic models reaching from the atomic/molecular scale over the meso scale of structures and materials up to components, stack and system level. In addition an appropriate way of coupling the different scales is required.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2016License: CC BY NC NDData sources: Archivio della Ricerca - Università di SalernoRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCUniversity of Applied Sciences: OPUS-HSOArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.11.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 76visibility views 76 download downloads 300 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2016License: CC BY NC NDData sources: Archivio della Ricerca - Università di SalernoRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCUniversity of Applied Sciences: OPUS-HSOArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.11.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 GermanyPublisher:Elsevier BV Authors: Georg A. Futter; Arnulf Latz; Thomas Jahnke;Abstract Chemical membrane degradation causes deterioration of critical membrane properties such as gas separation which finally causes failure of polymer electrolyte membrane fuel cells (PEMFCs). In order to identify the underlying physical processes, a physics-based model of chemical membrane degradation is implemented into the novel numerical framework NEOPARD-X [1]. The existing 2D PEMFC model is extended to incorporate the mechanisms of hydrogen peroxide formation and reduction, a redox cycle of iron contaminants in the ionomer phase, radical formation due to Fenton's chemistry and radical attack on the polymer structure. Unzipping of the polymer backbone and scission of the side chains are considered as degradation mechanism. The degradation model is validated against experimental data obtained in accelerated stress tests (ASTs). From theoretical considerations, the influence of chemical membrane degradation on the cell performance is revealed. The influence of pressure, relative humidity and cell voltage on the chemical degradation is rationalized. The operating conditions strongly influence the kinetics and spacial distribution of the membrane degradation. Degradation is found to be most pronounced at elevated pressure, high relative humidity and high cell voltage close to the interface of anode catalyst layer and PEM.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 GermanyPublisher:Elsevier BV Georg A. Futter; Pawel Gazdzicki; K. Andreas Friedrich; Arnulf Latz; Thomas Jahnke;Abstract A transient 2D physical continuum-level model for analyzing polymer electrolyte membrane fuel cell (PEMFC) performance is developed and implemented into the new numerical framework NEOPARD-X. The model incorporates non-isothermal, compositional multiphase flow in both electrodes coupled to transport of water, protons and dissolved gaseous species in the polymer electrolyte membrane (PEM). Ionic and electrical charge transport is considered and a detailed model for the oxygen reduction reaction (ORR) combined with models for platinum oxide formation and oxygen transport in the ionomer thin-films of the catalyst layers (CLs) is applied. The model is validated by performance curves and impedance spectroscopic experiments, performed under various operating conditions, with a single set of parameters and used to study water management in co- and counter-flow operation. Based on electrochemical impedance spectra (EIS) simulations, the physical processes which govern the PEMFC performance are analyzed in detail. It is concluded that the contribution of diffusion through the porous electrodes to the overall cell impedance is minor, but concentration gradients along the channel have a strong impact. Inductive phenomena at low frequencies are identified from physics-based modeling. Induction is caused by humidity dependent ionomer properties and platinum oxide formation on the catalyst surface.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.04.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Spain, Spain, France, Spain, Germany, Spain, Germany, Italy, Germany, SpainPublisher:Elsevier BV Funded by:EC | PUMA MINDEC| PUMA MINDT. Kerber; Alejandro A. Franco; Alejandro A. Franco; Georgios Tsotridis; Wolfgang G. Bessler; Manik Mayur; M. Quinaud; Georg Futter; Matías Abel Oscar Quiroga; Matías Abel Oscar Quiroga; Federico Calle-Vallejo; Thomas Malkow; Philippe Sautet; Thomas Jahnke; Mathias Gerard; G. Papakonstantinou; David Loffreda; C. Kompis; Pascal Schott; Kourosh Malek; Cesare Pianese; Pierpaolo Polverino; Arnulf Latz; Maria Pina Serra; Stephan Strahl; R. Ferreira de Morais;handle: 10261/132951 , 11386/4663236 , 2117/86086
Proton Exchange Membrane Fuel Cells (PEMFC) are energy efficient and environmentally friendly alternatives to conventional energy conversion systems in many yet emerging applications. In order to enable prediction of their performance and durability, it is crucial to gain a deeper understanding of the relevant operation phenomena, e.g., electrochemistry, transport phenomena, thermodynamics as well as the mechanisms leading to the degradation of cell components. Achieving the goal of providing predictive tools to model PEMFC performance, durability and degradation is a challenging task requiring the development of detailed and realistic models reaching from the atomic/molecular scale over the meso scale of structures and materials up to components, stack and system level. In addition an appropriate way of coupling the different scales is required.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2016License: CC BY NC NDData sources: Archivio della Ricerca - Università di SalernoRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCUniversity of Applied Sciences: OPUS-HSOArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.11.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 76visibility views 76 download downloads 300 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2016License: CC BY NC NDData sources: Archivio della Ricerca - Università di SalernoRecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2016Data sources: UPCommons. Portal del coneixement obert de la UPCUniversity of Applied Sciences: OPUS-HSOArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.11.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 GermanyPublisher:Elsevier BV Authors: Georg A. Futter; Arnulf Latz; Thomas Jahnke;Abstract Chemical membrane degradation causes deterioration of critical membrane properties such as gas separation which finally causes failure of polymer electrolyte membrane fuel cells (PEMFCs). In order to identify the underlying physical processes, a physics-based model of chemical membrane degradation is implemented into the novel numerical framework NEOPARD-X [1]. The existing 2D PEMFC model is extended to incorporate the mechanisms of hydrogen peroxide formation and reduction, a redox cycle of iron contaminants in the ionomer phase, radical formation due to Fenton's chemistry and radical attack on the polymer structure. Unzipping of the polymer backbone and scission of the side chains are considered as degradation mechanism. The degradation model is validated against experimental data obtained in accelerated stress tests (ASTs). From theoretical considerations, the influence of chemical membrane degradation on the cell performance is revealed. The influence of pressure, relative humidity and cell voltage on the chemical degradation is rationalized. The operating conditions strongly influence the kinetics and spacial distribution of the membrane degradation. Degradation is found to be most pronounced at elevated pressure, high relative humidity and high cell voltage close to the interface of anode catalyst layer and PEM.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu