- home
- Advanced Search
- Energy Research
- GCB Bioenergy
- Energy Research
- GCB Bioenergy
description Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | ESM2025, UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...EC| ESM2025 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Littleton, Emma W.; Shepherd, Anita; Harper, Anna B.; Hastings, Astley F. S.; Vaughan, Naomi E.; Doelman, Jonathan; van Vuuren, Detlef P.; Lenton, Timothy M.;doi: 10.1111/gcbb.12982
handle: 10871/130438 , 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | Supergen Bioenergy Hub 20...UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| Supergen Bioenergy Hub 2018Rebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Feasibility of Afforestat..., UKRI | ADVENT (ADdressing Valuat...UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Anita Shepherd; John Clifton‐Brown; Jason Kam; Sam Buckby; Astley Hastings;doi: 10.1111/gcbb.12690
handle: 2164/14728
AbstractThis study investigates the condition of commercial miscanthus fields, growers’ concerns and reasons for growing the crop and also the modelling of a realistic commercial yield. Juvenile and mature Miscanthus × giganteus crops of varying age are surveyed in growers’ fields across mid‐England. We record in‐field plant density counts and the morphology of crops of different ages. Mature crops thrive on both clay and sandy soils. Plants surveyed appear robust to drought, weeds and disease, the only vulnerability is rhizome condition when planting. Mature miscanthus planted pre‐2014 continues to develop, spreading into planting gaps and growing more tillers. In stands planted post‐2014, improved planting techniques reduce planting gaps and create a reasonably consistent planting density of 12,500 plants/ha. The main reason for growers' investment in miscanthus is not financial return, but relates to its low requirement for field operations, low maintenance cost and regeneration. This offers practical solutions for difficult field access and social acceptability near public places (related to spray operations and crop vandalism). Wildlife is abundant in these fields, largely undisturbed except for harvest. This contributes to the greening of agriculture; fields are also used for gamebird cover and educational tours. This crop is solving practical problems for growers while improving the environment. Observed yield data indicate gradual yield increase with crop age, a yield plateau but no yield decrease since 2006. In stands with low planting densities, yields plateau after 9 years. Surveyed yield data are used to parameterize the MiscanFor bioenergy model. This produces options to simulate either juvenile yields or a yield for a landscape containing different aged crops. For mature English crop yields of 12 t ha−1 year−1, second‐ and third‐year juvenile harvests average 7 t ha−1 year−1 and a surrounding 10 km by 10 km area of distributed crop age would average 9 t ha−1 year−1.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | UK Energy Research Centre..., UKRI | ADVENT (ADdressing Valuat...UKRI| UK Energy Research Centre Phase 4 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Authors: Anita Shepherd; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12803
handle: 2164/16001
AbstractUncertainty is inherent in modelled projections of bioenergy with carbon capture and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty comes from different climate and soil inputs. We investigated variations in 70‐year UK projections of Miscanthus × giganteus (M × g), BECCS and environmental impacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projections and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK‐average but yield uncertainty varied regionally, especially south and east England. BECCS projections were similar among cohorts, with variation resulting from climate cohorts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncertainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). This is supported by annual time series, displaying variable annual climate and a close yield–BECCS–climate relationship but partial correspondence of yield and BECCS with maximal soil variability. Each HWSD soil grid square contains up to 10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating why BECCS from combined soil sequences were not significantly different from BECCS using the dominant soil type. Mean BECCS from the full climate ensemble combined with the full soil sequences, over the current area of cropping limits in England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. The uncertainty is specific to the input datasets and model used. The message of this study is to ensure that uncertainty is accounted for when interpreting modelled projections of land use impacts.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Anita Shepherd; Emma Littleton; John Clifton‐Brown; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12671
handle: 2164/14144 , 10871/124852
AbstractIn this article, we modify bioenergy model MiscanFor investigating global and UK potentials for Miscanthus × giganteus as a bioenergy resource for carbon capture in the 21st century under the RCP 2.6 climate scenario using SSP2 land use projections. UK bioenergy land projections begin in the 2040s, 60 year average is 0.47 Mega ha rising to 1.9 Mega ha (2090s). Our projections estimate UK energy generation of 0.09 EJ/year (60 year average) and 0.37 EJ/year (2090s), under stable miscanthus yields of 12 t ha−1 year−1. We estimate aggregated UK soil carbon (C) increases of 0.09 Mt C/year (60 year average) and 0.14 Mt C/year (2090s) with C capture plus sequestration rate of 2.8 Mt C/year (60 year average) and 10.49 Mt C/year (2090s). Global bioenergy land use begins in 2010, 90 year average is 0.13 Gha rising to 0.19 Gha by the 2090s, miscanthus projections give a 90 year average energy generation of 16 EJ/year, rising to 26.7 EJ/year by the 2090s. The largest national capabilities for yield, energy and C increase are projected to be Brazil and China. Ninety year average global miscanthus yield of 1 Gt/year will be 1.7 Gt/year by the 2090s. Global soil C sequestration increases less with time, from a century average of 73.6 Mt C/year to 42.9 Mt C/year by the 2090s with C capture plus sequestration rate of 0.54 Gt C/year (60 year average) and 0.81 Gt C/year (2090s). M. giganteus could provide just over 5% of the bioenergy requirement by the 2090s to satisfy the RCP 2.6 SSP2 climate scenario. The choice of global land use data introduces a potential source of error. In reality, multiple bioenergy sources will be used, best suited to local conditions, but results highlight global requirements for development in bioenergy crops, infrastructure and support.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Netherlands, Italy, United Kingdom, Italy, Italy, ItalyPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | UK Energy Research Centre..., UKRI | Supergen Bioenergy Hub 20... +3 projectsUKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| UK Energy Research Centre Phase 4 ,UKRI| Supergen Bioenergy Hub 2018 ,UKRI| EPSRC Centre for Doctoral Training in Bioenergy ,EC| GRACE ,EC| MAGICAuthors: Clifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; +36 AuthorsClifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; McCalmont, Jon; Whitaker, Jeanette; Alexopoulou, Efi; Amaducci, Stefano; Andronic, Larisa; Ashman, Christopher; Awty‐Carroll, Danny; Bhatia, Rakesh; Breuer, Lutz; Cosentino, Salvatore; Cracroft‐Eley, William; Donnison, Iain; Elbersen, Berien; Ferrarini, Andrea; Ford, Judith; Greef, Jörg; Ingram, Julie; Lewandowski, Iris; Magenau, Elena; Mos, Michal; Petrick, Martin; Pogrzeba, Marta; Robson, Paul; Rowe, Rebecca L.; Sandu, Anatolii; Schwarz, Kai‐Uwe; Scordia, Danilo; Scurlock, Jonathan; Shepherd, Anita; Thornton, Judith; Trindade, Luisa M.; Vetter, Sylvia; Wagner, Moritz; Wu, Pei‐Chen; Yamada, Toshihiko; Kiesel, Andreas;doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
AbstractDemand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio‐economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low‐carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long‐term, strategic R&D and education for positive environmental, economic and social sustainability impacts.
NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Croatia, Italy, Croatia, United Kingdom, NetherlandsPublisher:Wiley Funded by:EC | GRACEEC| GRACEAwty‐Carroll, Danny; Magenau, Elena; Al Hassan, Mohamad; Martani, Enrico; Kontek, Mislav; van der Pluijm, Philip; Ashman, Chris; de Maupeou, Emmanuel; McCalmont, Jon; Petrie, Gert‐Jan; Davey, Chris; van der Cruijsen, Kasper; Jurišić, Vanja; Amaducci, Stefano; Lamy, Isabelle; Shepherd, Anita; Kam, Jason; Hoogendam, Annick; Croci, Michele; Dolstra, Oene; Ferrarini, Andrea; Lewandowski, Iris; Trindade, Luisa M.; Kiesel, Andreas; Clifton‐Brown, John;doi: 10.1111/gcbb.13026
handle: 10807/230633 , 2164/19972
AbstractMiscanthus, a C4 perennial rhizomatous grass from Asia is a leading candidate for the supply of sustainable biomass needed to grow the bioeconomy. European Miscanthus breeding programmes have recently produced a new range of seeded hybrids with the objective of increasing scalability to large acreages limited by current clonal propagation. For the EU‐GRACE project, new replicated field trials were established in seven locations across Europe in 2018 with eight intraspecific M. sinensis hybrids (sin × sin) and six M. sacchariflorus × M. sinensis (sac × sin) from Dutch and UK breeding programmes, respectively, with clonal Miscanthus × giganteus. The planting density of the sin × sin was double that of sac × sin (30,000 & 15,000 plants ha−1), creating commercially relevant upscaling comparisons between systems. Over the first 3 years, the establishment depended on location and hybrid. The mature sin × sin hybrids formed tight tufts of shoots up to 2.5 m tall which flower and senesce earlier than the taller sac × sin hybrids. Following the third growing season, the highest yields were recorded in Northern Italy at a low altitude (average 13.7 (max 21) Mg DM ha−1) and the lowest yielding was on the industrially damaged marginal land site in Northern France (average 7.0 (max 10) Mg DM ha−1). Moisture contents at spring harvest were lowest in Croatia (21.7%) and highest in Wales, UK (41.6%). Overall, lower moisture contents at harvest, which are highly desirable for transport, storage and for most end‐use applications, were found in sin × sin hybrids than sac × sin (30% and 40%, respectively). Yield depended on climate interactions with the hybrid and their associated planting systems. The sin × sin hybrids appeared better adapted to northern Europe and sac × sin hybrids to southern Europe. Longer‐term yield observations over crop lifespans will be needed to explore the biological (yield persistence) and economic costs and benefits of the different hybrid systems.
PubliCatt arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2023Data sources: Croatian Scientific Bibliography - CROSBIWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PubliCatt arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2023Data sources: Croatian Scientific Bibliography - CROSBIWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, United Kingdom, Italy, United Kingdom, NetherlandsPublisher:Wiley Funded by:UKRI | UK Energy Research Centre..., UKRI | Perennial Biomass Crops f..., EC | GRACE +1 projectsUKRI| UK Energy Research Centre Phase 4 ,UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,EC| GRACE ,UKRI| Supergen Bioenergy Hub 2018Shepherd A.; Awty-Carroll D.; Kam J.; Ashman C.; Magenau E.; Martani E.; Kontek M.; Ferrarini A.; Amaducci S.; Davey C.; Jurišić V.; Petrie G. J.; Al ; Hassan M.; Lamy I.; Lewandowski I.; de Maupeou E.; McCalmont J.; Trindade L.; van der Cruijsen K.; van der Pluijm P.; Rowe R.; Lovett A.; Donnison I.; Kiesel A.; Clifton-Brown J.; Hastings A.;AbstractNew biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low‐cost rapid light interception measurements using a simple laboratory‐made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market‐ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed‐propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.
NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | ESM2025, UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...EC| ESM2025 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Littleton, Emma W.; Shepherd, Anita; Harper, Anna B.; Hastings, Astley F. S.; Vaughan, Naomi E.; Doelman, Jonathan; van Vuuren, Detlef P.; Lenton, Timothy M.;doi: 10.1111/gcbb.12982
handle: 10871/130438 , 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | Supergen Bioenergy Hub 20...UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| Supergen Bioenergy Hub 2018Rebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Feasibility of Afforestat..., UKRI | ADVENT (ADdressing Valuat...UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Anita Shepherd; John Clifton‐Brown; Jason Kam; Sam Buckby; Astley Hastings;doi: 10.1111/gcbb.12690
handle: 2164/14728
AbstractThis study investigates the condition of commercial miscanthus fields, growers’ concerns and reasons for growing the crop and also the modelling of a realistic commercial yield. Juvenile and mature Miscanthus × giganteus crops of varying age are surveyed in growers’ fields across mid‐England. We record in‐field plant density counts and the morphology of crops of different ages. Mature crops thrive on both clay and sandy soils. Plants surveyed appear robust to drought, weeds and disease, the only vulnerability is rhizome condition when planting. Mature miscanthus planted pre‐2014 continues to develop, spreading into planting gaps and growing more tillers. In stands planted post‐2014, improved planting techniques reduce planting gaps and create a reasonably consistent planting density of 12,500 plants/ha. The main reason for growers' investment in miscanthus is not financial return, but relates to its low requirement for field operations, low maintenance cost and regeneration. This offers practical solutions for difficult field access and social acceptability near public places (related to spray operations and crop vandalism). Wildlife is abundant in these fields, largely undisturbed except for harvest. This contributes to the greening of agriculture; fields are also used for gamebird cover and educational tours. This crop is solving practical problems for growers while improving the environment. Observed yield data indicate gradual yield increase with crop age, a yield plateau but no yield decrease since 2006. In stands with low planting densities, yields plateau after 9 years. Surveyed yield data are used to parameterize the MiscanFor bioenergy model. This produces options to simulate either juvenile yields or a yield for a landscape containing different aged crops. For mature English crop yields of 12 t ha−1 year−1, second‐ and third‐year juvenile harvests average 7 t ha−1 year−1 and a surrounding 10 km by 10 km area of distributed crop age would average 9 t ha−1 year−1.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | UK Energy Research Centre..., UKRI | ADVENT (ADdressing Valuat...UKRI| UK Energy Research Centre Phase 4 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Authors: Anita Shepherd; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12803
handle: 2164/16001
AbstractUncertainty is inherent in modelled projections of bioenergy with carbon capture and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty comes from different climate and soil inputs. We investigated variations in 70‐year UK projections of Miscanthus × giganteus (M × g), BECCS and environmental impacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projections and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK‐average but yield uncertainty varied regionally, especially south and east England. BECCS projections were similar among cohorts, with variation resulting from climate cohorts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncertainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). This is supported by annual time series, displaying variable annual climate and a close yield–BECCS–climate relationship but partial correspondence of yield and BECCS with maximal soil variability. Each HWSD soil grid square contains up to 10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating why BECCS from combined soil sequences were not significantly different from BECCS using the dominant soil type. Mean BECCS from the full climate ensemble combined with the full soil sequences, over the current area of cropping limits in England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. The uncertainty is specific to the input datasets and model used. The message of this study is to ensure that uncertainty is accounted for when interpreting modelled projections of land use impacts.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Anita Shepherd; Emma Littleton; John Clifton‐Brown; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12671
handle: 2164/14144 , 10871/124852
AbstractIn this article, we modify bioenergy model MiscanFor investigating global and UK potentials for Miscanthus × giganteus as a bioenergy resource for carbon capture in the 21st century under the RCP 2.6 climate scenario using SSP2 land use projections. UK bioenergy land projections begin in the 2040s, 60 year average is 0.47 Mega ha rising to 1.9 Mega ha (2090s). Our projections estimate UK energy generation of 0.09 EJ/year (60 year average) and 0.37 EJ/year (2090s), under stable miscanthus yields of 12 t ha−1 year−1. We estimate aggregated UK soil carbon (C) increases of 0.09 Mt C/year (60 year average) and 0.14 Mt C/year (2090s) with C capture plus sequestration rate of 2.8 Mt C/year (60 year average) and 10.49 Mt C/year (2090s). Global bioenergy land use begins in 2010, 90 year average is 0.13 Gha rising to 0.19 Gha by the 2090s, miscanthus projections give a 90 year average energy generation of 16 EJ/year, rising to 26.7 EJ/year by the 2090s. The largest national capabilities for yield, energy and C increase are projected to be Brazil and China. Ninety year average global miscanthus yield of 1 Gt/year will be 1.7 Gt/year by the 2090s. Global soil C sequestration increases less with time, from a century average of 73.6 Mt C/year to 42.9 Mt C/year by the 2090s with C capture plus sequestration rate of 0.54 Gt C/year (60 year average) and 0.81 Gt C/year (2090s). M. giganteus could provide just over 5% of the bioenergy requirement by the 2090s to satisfy the RCP 2.6 SSP2 climate scenario. The choice of global land use data introduces a potential source of error. In reality, multiple bioenergy sources will be used, best suited to local conditions, but results highlight global requirements for development in bioenergy crops, infrastructure and support.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Netherlands, Italy, United Kingdom, Italy, Italy, ItalyPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | UK Energy Research Centre..., UKRI | Supergen Bioenergy Hub 20... +3 projectsUKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| UK Energy Research Centre Phase 4 ,UKRI| Supergen Bioenergy Hub 2018 ,UKRI| EPSRC Centre for Doctoral Training in Bioenergy ,EC| GRACE ,EC| MAGICAuthors: Clifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; +36 AuthorsClifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; McCalmont, Jon; Whitaker, Jeanette; Alexopoulou, Efi; Amaducci, Stefano; Andronic, Larisa; Ashman, Christopher; Awty‐Carroll, Danny; Bhatia, Rakesh; Breuer, Lutz; Cosentino, Salvatore; Cracroft‐Eley, William; Donnison, Iain; Elbersen, Berien; Ferrarini, Andrea; Ford, Judith; Greef, Jörg; Ingram, Julie; Lewandowski, Iris; Magenau, Elena; Mos, Michal; Petrick, Martin; Pogrzeba, Marta; Robson, Paul; Rowe, Rebecca L.; Sandu, Anatolii; Schwarz, Kai‐Uwe; Scordia, Danilo; Scurlock, Jonathan; Shepherd, Anita; Thornton, Judith; Trindade, Luisa M.; Vetter, Sylvia; Wagner, Moritz; Wu, Pei‐Chen; Yamada, Toshihiko; Kiesel, Andreas;doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
AbstractDemand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio‐economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low‐carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long‐term, strategic R&D and education for positive environmental, economic and social sustainability impacts.
NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Croatia, Italy, Croatia, United Kingdom, NetherlandsPublisher:Wiley Funded by:EC | GRACEEC| GRACEAwty‐Carroll, Danny; Magenau, Elena; Al Hassan, Mohamad; Martani, Enrico; Kontek, Mislav; van der Pluijm, Philip; Ashman, Chris; de Maupeou, Emmanuel; McCalmont, Jon; Petrie, Gert‐Jan; Davey, Chris; van der Cruijsen, Kasper; Jurišić, Vanja; Amaducci, Stefano; Lamy, Isabelle; Shepherd, Anita; Kam, Jason; Hoogendam, Annick; Croci, Michele; Dolstra, Oene; Ferrarini, Andrea; Lewandowski, Iris; Trindade, Luisa M.; Kiesel, Andreas; Clifton‐Brown, John;doi: 10.1111/gcbb.13026
handle: 10807/230633 , 2164/19972
AbstractMiscanthus, a C4 perennial rhizomatous grass from Asia is a leading candidate for the supply of sustainable biomass needed to grow the bioeconomy. European Miscanthus breeding programmes have recently produced a new range of seeded hybrids with the objective of increasing scalability to large acreages limited by current clonal propagation. For the EU‐GRACE project, new replicated field trials were established in seven locations across Europe in 2018 with eight intraspecific M. sinensis hybrids (sin × sin) and six M. sacchariflorus × M. sinensis (sac × sin) from Dutch and UK breeding programmes, respectively, with clonal Miscanthus × giganteus. The planting density of the sin × sin was double that of sac × sin (30,000 & 15,000 plants ha−1), creating commercially relevant upscaling comparisons between systems. Over the first 3 years, the establishment depended on location and hybrid. The mature sin × sin hybrids formed tight tufts of shoots up to 2.5 m tall which flower and senesce earlier than the taller sac × sin hybrids. Following the third growing season, the highest yields were recorded in Northern Italy at a low altitude (average 13.7 (max 21) Mg DM ha−1) and the lowest yielding was on the industrially damaged marginal land site in Northern France (average 7.0 (max 10) Mg DM ha−1). Moisture contents at spring harvest were lowest in Croatia (21.7%) and highest in Wales, UK (41.6%). Overall, lower moisture contents at harvest, which are highly desirable for transport, storage and for most end‐use applications, were found in sin × sin hybrids than sac × sin (30% and 40%, respectively). Yield depended on climate interactions with the hybrid and their associated planting systems. The sin × sin hybrids appeared better adapted to northern Europe and sac × sin hybrids to southern Europe. Longer‐term yield observations over crop lifespans will be needed to explore the biological (yield persistence) and economic costs and benefits of the different hybrid systems.
PubliCatt arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2023Data sources: Croatian Scientific Bibliography - CROSBIWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PubliCatt arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19972Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2023Data sources: Croatian Scientific Bibliography - CROSBIWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, United Kingdom, Italy, United Kingdom, NetherlandsPublisher:Wiley Funded by:UKRI | UK Energy Research Centre..., UKRI | Perennial Biomass Crops f..., EC | GRACE +1 projectsUKRI| UK Energy Research Centre Phase 4 ,UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,EC| GRACE ,UKRI| Supergen Bioenergy Hub 2018Shepherd A.; Awty-Carroll D.; Kam J.; Ashman C.; Magenau E.; Martani E.; Kontek M.; Ferrarini A.; Amaducci S.; Davey C.; Jurišić V.; Petrie G. J.; Al ; Hassan M.; Lamy I.; Lewandowski I.; de Maupeou E.; McCalmont J.; Trindade L.; van der Cruijsen K.; van der Pluijm P.; Rowe R.; Lovett A.; Donnison I.; Kiesel A.; Clifton-Brown J.; Hastings A.;AbstractNew biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low‐cost rapid light interception measurements using a simple laboratory‐made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market‐ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed‐propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.
NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19966Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu