- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOPavel Alekseychik; Daniel F. Nadeau; Brian D. Amiro; Vyacheslav Zyrianov; Allison L. Dunn; Manuel Helbig; Manuel Helbig; Mats Nilsson; Elena D. Lapshina; Annalea Lohila; Mika Korkiakoski; Mikaell Ottosson Löfvenius; Silvie Harder; Hiroki Ikawa; Christopher Schulze; Timo Vesala; Elyn Humphreys; Matthias Peichl; William L. Quinton; Nigel T. Roulet; Erin M. Nicholls; Anders Lindroth; Andrej Varlagin; Sean K. Carey; Ian B. Strachan; Richard M. Petrone; Eugénie S. Euskirchen; Lars Kutzbach; Oliver Sonnentag; Masahito Ueyama; Juha-Pekka Tuovinen; Michelle Garneau; Hiroki Iwata; Takeshi Ohta; Trofim C. Maximov; Ankur R. Desai; Alan G. Barr; Anatoly S. Prokushkin; Philip Marsh; Lawrence B. Flanagan; Pierre-Erik Isabelle; Paul A. Moore; Juliya Kurbatova; T. Andrew Black; Eeva-Stiina Tuittila; Mika Aurela; Jinshu Chi; Thomas Friborg; Martin Wilmking; Pierre Taillardat; Jiquan Chen; Benjamin R. K. Runkle; Benjamin R. K. Runkle; Rachhpal S. Jassal; Ivan Mammarella; Jessica Turner; James M. Waddington; Michal Heliasz; Achim Grelle;handle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Funded by:NSERCNSERCAuthors: Brandon Van Huizen; Chantel E. Markle; Paul A. Moore; James M. Waddington;AbstractEnergy absorption and flow through a nest is an important aspect of embryonic development in many reptile species including turtles. To date, few studies have explicitly attempted to quantify the energy flow through turtle nests, opting instead for the simplified approach offered by temperature index models. However, the quantification of the energy can provide an explicit abiotic link that can link biological models to biometeorological and ecohydrological processes and models. We investigated the energy flow through turtle nests occupying different bedrock morphologies within a Canadian Shield Rock Barren landscape, in Ontario, Canada. The taxons studied were Spotted Turtle (Clemmys guttata), Midland Painted Turtle (Chrysemys picta marginata), and Blanding's Turtle (Emydoidea blandingii). Nest temperature and soil moisture were measured in 2018 and 2019 using sensors placed in the soil adjacent to 12 turtle nest cavities. Three main rock morphologies were identified for each nest location, Crevice, Ledge, and Flat types, that are in order of decreasing bedrock percentage contact with the nest site. Ground heat flux and change in heat storage were determined using the calorimetric method for each nest, while the direction of energy flux between the atmosphere and the underlying rock was also determined. The Crevice nest morphology experienced the lowest ground heat flux on average (1.56 × 10−1 W m−2) and lowest cumulative heat storage (230 MJ) compared to the Flat (440 MJ) and Ledge (331 MJ) nests. However, over the diurnal cycle, large heat gains by Flat nests were mostly balanced out by nighttime heat losses. While Crevice nests saw the lowest daily heat storage gains, they experienced much lower heat losses over the evening period compared to the other nest types. Furthermore, we found that 59% of the energy is directed from the underlying bedrock into the Crevice nest, highlighting the importance of the bedrock in controlling thermal dynamics in the turtle nesting habitat. The lower variability in energy parameters for Crevice nest types can be attributed to higher amounts of nest‐to‐bedrock contact, compared to the flat nest types. Our results indicate that Crevice morphology may be ideal for turtles nesting at their northern limits because minimal heat loss during the evening can result in a more stable thermal incubation environment. Future conservation and habitat restoration efforts should consider the importance of bedrock morphology and prioritize the protection of Crevice nest sites. Furthermore, this work highlights important opportunities for potential interdisciplinary work between ecologists, climatologists, biologists, and hydrologists, specifically the integration of ecohydrological and biological models. This work also underscores the potential uncertainty of climate change impacts on turtle egg hatching success and nest sex ratios.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:IOP Publishing Funded by:NSERCNSERCOwen F Sutton; Alex K Furukawa; Paul A Moore; Paul J Morris; James M Waddington;The ecosystem services provided by northern peatlands has motivated the profusion of research into their carbon and water storage functions and the processes that maintain these functions. Yet typically this research has been conducted in deep, laterally extensive peatlands. These systems exhibit numerous regulatory mechanisms that enhance resilience to disturbances like wildfire and stressors like climate. In contrast, shallow peatlands have demonstrated greater vulnerability to external environmental pressures, exhibiting higher moss moisture stress, lower net carbon sequestration, and higher burn severity.Given that climate change is anticipated to enhance drying in northern peatlands, and increase the frequency, severity, and areal extent of wildfire, we suggest that the contemporary biogeochemical and hydrological behaviour of shallow peatlands presages the future behaviour of deep peatlands. The limited capacity of autogenic feedback mechanisms operating in shallow peatlands to regulate their environment offers a valuable opportunity to study the boundaries of peatland resilience – an opportunity only available with ecosystems that are operating on the margins of survivability. We advocate for the study of shallow peatlands to understand: 1) their spatial distribution and hydroclimatic envelope; 2) the strength of their regulatory mechanisms; 3) tipping points that manifest in these regulatory mechanisms; and 4) identification of metrics that indicate when thresholds have been exceeded. This will not only further our process-based understanding of peatland regulatory feedbacks, but also aid in peatland restoration, and contribute to our conceptualization of peatland development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/add179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/add179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOPavel Alekseychik; Daniel F. Nadeau; Brian D. Amiro; Vyacheslav Zyrianov; Allison L. Dunn; Manuel Helbig; Manuel Helbig; Mats Nilsson; Elena D. Lapshina; Annalea Lohila; Mika Korkiakoski; Mikaell Ottosson Löfvenius; Silvie Harder; Hiroki Ikawa; Christopher Schulze; Timo Vesala; Elyn Humphreys; Matthias Peichl; William L. Quinton; Nigel T. Roulet; Erin M. Nicholls; Anders Lindroth; Andrej Varlagin; Sean K. Carey; Ian B. Strachan; Richard M. Petrone; Eugénie S. Euskirchen; Lars Kutzbach; Oliver Sonnentag; Masahito Ueyama; Juha-Pekka Tuovinen; Michelle Garneau; Hiroki Iwata; Takeshi Ohta; Trofim C. Maximov; Ankur R. Desai; Alan G. Barr; Anatoly S. Prokushkin; Philip Marsh; Lawrence B. Flanagan; Pierre-Erik Isabelle; Paul A. Moore; Juliya Kurbatova; T. Andrew Black; Eeva-Stiina Tuittila; Mika Aurela; Jinshu Chi; Thomas Friborg; Martin Wilmking; Pierre Taillardat; Jiquan Chen; Benjamin R. K. Runkle; Benjamin R. K. Runkle; Rachhpal S. Jassal; Ivan Mammarella; Jessica Turner; James M. Waddington; Michal Heliasz; Achim Grelle;handle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Funded by:NSERCNSERCAuthors: Brandon Van Huizen; Chantel E. Markle; Paul A. Moore; James M. Waddington;AbstractEnergy absorption and flow through a nest is an important aspect of embryonic development in many reptile species including turtles. To date, few studies have explicitly attempted to quantify the energy flow through turtle nests, opting instead for the simplified approach offered by temperature index models. However, the quantification of the energy can provide an explicit abiotic link that can link biological models to biometeorological and ecohydrological processes and models. We investigated the energy flow through turtle nests occupying different bedrock morphologies within a Canadian Shield Rock Barren landscape, in Ontario, Canada. The taxons studied were Spotted Turtle (Clemmys guttata), Midland Painted Turtle (Chrysemys picta marginata), and Blanding's Turtle (Emydoidea blandingii). Nest temperature and soil moisture were measured in 2018 and 2019 using sensors placed in the soil adjacent to 12 turtle nest cavities. Three main rock morphologies were identified for each nest location, Crevice, Ledge, and Flat types, that are in order of decreasing bedrock percentage contact with the nest site. Ground heat flux and change in heat storage were determined using the calorimetric method for each nest, while the direction of energy flux between the atmosphere and the underlying rock was also determined. The Crevice nest morphology experienced the lowest ground heat flux on average (1.56 × 10−1 W m−2) and lowest cumulative heat storage (230 MJ) compared to the Flat (440 MJ) and Ledge (331 MJ) nests. However, over the diurnal cycle, large heat gains by Flat nests were mostly balanced out by nighttime heat losses. While Crevice nests saw the lowest daily heat storage gains, they experienced much lower heat losses over the evening period compared to the other nest types. Furthermore, we found that 59% of the energy is directed from the underlying bedrock into the Crevice nest, highlighting the importance of the bedrock in controlling thermal dynamics in the turtle nesting habitat. The lower variability in energy parameters for Crevice nest types can be attributed to higher amounts of nest‐to‐bedrock contact, compared to the flat nest types. Our results indicate that Crevice morphology may be ideal for turtles nesting at their northern limits because minimal heat loss during the evening can result in a more stable thermal incubation environment. Future conservation and habitat restoration efforts should consider the importance of bedrock morphology and prioritize the protection of Crevice nest sites. Furthermore, this work highlights important opportunities for potential interdisciplinary work between ecologists, climatologists, biologists, and hydrologists, specifically the integration of ecohydrological and biological models. This work also underscores the potential uncertainty of climate change impacts on turtle egg hatching success and nest sex ratios.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.11183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:IOP Publishing Funded by:NSERCNSERCOwen F Sutton; Alex K Furukawa; Paul A Moore; Paul J Morris; James M Waddington;The ecosystem services provided by northern peatlands has motivated the profusion of research into their carbon and water storage functions and the processes that maintain these functions. Yet typically this research has been conducted in deep, laterally extensive peatlands. These systems exhibit numerous regulatory mechanisms that enhance resilience to disturbances like wildfire and stressors like climate. In contrast, shallow peatlands have demonstrated greater vulnerability to external environmental pressures, exhibiting higher moss moisture stress, lower net carbon sequestration, and higher burn severity.Given that climate change is anticipated to enhance drying in northern peatlands, and increase the frequency, severity, and areal extent of wildfire, we suggest that the contemporary biogeochemical and hydrological behaviour of shallow peatlands presages the future behaviour of deep peatlands. The limited capacity of autogenic feedback mechanisms operating in shallow peatlands to regulate their environment offers a valuable opportunity to study the boundaries of peatland resilience – an opportunity only available with ecosystems that are operating on the margins of survivability. We advocate for the study of shallow peatlands to understand: 1) their spatial distribution and hydroclimatic envelope; 2) the strength of their regulatory mechanisms; 3) tipping points that manifest in these regulatory mechanisms; and 4) identification of metrics that indicate when thresholds have been exceeded. This will not only further our process-based understanding of peatland regulatory feedbacks, but also aid in peatland restoration, and contribute to our conceptualization of peatland development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/add179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/add179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu