- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Jessica Dunn; Kabian Ritter; Jesús M. Velázquez; Alissa Kendall;doi: 10.1111/jiec.13414
AbstractLithium‐ion batteries (LIBs) are a key technology in decarbonizing the transportation and electricity sectors, yet the use of critical materials, such as cobalt, nickel, and lithium, lead to environmental and social impacts. Reusing, repurposing, and recycling mitigate battery impacts by extending their lifespan and reducing reliance on virgin materials. Innovation that reduces demand for these problematic materials and increases battery efficiency also reduces impacts. Two examples of this technological innovation include, (1) the development of energy dense cathode chemistry containing less cobalt, a material with high social and environmental impacts; and (2) the use of columnar silicon thin film anode, which results in increased energy density compared to the commonly used graphite anode. This research assesses whether these technological innovations change the currently understood waste hierarchy, which prioritizes reuse or repurposing prior to recycling. This is of interest because retired high‐cobalt batteries could supply their constituent materials sooner if recycled immediately and be used in low‐cobalt, higher‐performing batteries. The assessment considers the life cycle environmental impacts of two end‐of‐life management routes for a high‐cobalt LIB: first, recycling the battery immediately after the first use life to produce a new, and less material intensive battery, and second, repurposing the battery for a stationary storage application followed by recycling. Findings show that battery reuse reduces life cycle environmental impacts relative to immediate recycling. Thus, from an environmental perspective, the waste hierarchy holds, and steps to retain the batteries in their highest value use, such as through repurposing, should still be prioritized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Jessica Dunn; Kabian Ritter; Jesús M. Velázquez; Alissa Kendall;doi: 10.1111/jiec.13414
AbstractLithium‐ion batteries (LIBs) are a key technology in decarbonizing the transportation and electricity sectors, yet the use of critical materials, such as cobalt, nickel, and lithium, lead to environmental and social impacts. Reusing, repurposing, and recycling mitigate battery impacts by extending their lifespan and reducing reliance on virgin materials. Innovation that reduces demand for these problematic materials and increases battery efficiency also reduces impacts. Two examples of this technological innovation include, (1) the development of energy dense cathode chemistry containing less cobalt, a material with high social and environmental impacts; and (2) the use of columnar silicon thin film anode, which results in increased energy density compared to the commonly used graphite anode. This research assesses whether these technological innovations change the currently understood waste hierarchy, which prioritizes reuse or repurposing prior to recycling. This is of interest because retired high‐cobalt batteries could supply their constituent materials sooner if recycled immediately and be used in low‐cobalt, higher‐performing batteries. The assessment considers the life cycle environmental impacts of two end‐of‐life management routes for a high‐cobalt LIB: first, recycling the battery immediately after the first use life to produce a new, and less material intensive battery, and second, repurposing the battery for a stationary storage application followed by recycling. Findings show that battery reuse reduces life cycle environmental impacts relative to immediate recycling. Thus, from an environmental perspective, the waste hierarchy holds, and steps to retain the batteries in their highest value use, such as through repurposing, should still be prioritized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Authors: Hanjiro Ambrose; Alissa Kendall;Abstract Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Authors: Hanjiro Ambrose; Alissa Kendall;Abstract Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Alena J. Raymond; Jason T. DeJong; Michael G. Gomez; Alissa Kendall; Alexandra C. M. San Pablo; Minyong Lee; Charles M. R. Graddy; Douglas C. Nelson;doi: 10.3390/app15031059
Microbially induced calcium carbonate precipitation (MICP) is a biomediated ground improvement technology that uses ureolytic bacteria to precipitate calcium carbonate minerals to improve the strength and stiffness of soils. MICP can be mediated by either augmented non-native or stimulated indigenous microorganisms, resulting in biocemented soils and generated aqueous ammonium (NH4+) byproducts. Although the process has been extensively investigated, the fate and transport of generated NH4+ byproducts has posed an environmental challenge and to date, their associated environmental impacts have remained poorly understood. In an effort to better quantify process impacts, a large-scale experiment was conducted involving three 3.7 m long soil columns, wherein three different ureolytic biocementation treatment approaches were employed. A life cycle sustainability assessment (LCSA) was performed to compare the environmental impacts and costs of these different MICP treatment approaches as well as evaluate the potential environmental benefits of NH4+ byproduct removal using post-treatment rinsing. The objective of this paper is to present the results of the LCSA study. LCSA results suggest that when treatments are consistent with those performed in this study, stimulation can be more sustainable than augmentation, and the use of lower ureolytic rates can further reduce process environmental impacts by achieving greater spatial uniformity and extent of biocementation. The LCSA outcomes also illustrate tension between the environmental benefits afforded by NH4+ byproduct removal and the life cycle impacts and costs associated with this removal. For the specific testing conditions, the injection of 1.8 pore volumes of rinse solutions to remove generated NH4+ byproducts following biocementation was found to minimize environmental impacts; however, further refinement of such approaches will likely result from future field-scale applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Alena J. Raymond; Jason T. DeJong; Michael G. Gomez; Alissa Kendall; Alexandra C. M. San Pablo; Minyong Lee; Charles M. R. Graddy; Douglas C. Nelson;doi: 10.3390/app15031059
Microbially induced calcium carbonate precipitation (MICP) is a biomediated ground improvement technology that uses ureolytic bacteria to precipitate calcium carbonate minerals to improve the strength and stiffness of soils. MICP can be mediated by either augmented non-native or stimulated indigenous microorganisms, resulting in biocemented soils and generated aqueous ammonium (NH4+) byproducts. Although the process has been extensively investigated, the fate and transport of generated NH4+ byproducts has posed an environmental challenge and to date, their associated environmental impacts have remained poorly understood. In an effort to better quantify process impacts, a large-scale experiment was conducted involving three 3.7 m long soil columns, wherein three different ureolytic biocementation treatment approaches were employed. A life cycle sustainability assessment (LCSA) was performed to compare the environmental impacts and costs of these different MICP treatment approaches as well as evaluate the potential environmental benefits of NH4+ byproduct removal using post-treatment rinsing. The objective of this paper is to present the results of the LCSA study. LCSA results suggest that when treatments are consistent with those performed in this study, stimulation can be more sustainable than augmentation, and the use of lower ureolytic rates can further reduce process environmental impacts by achieving greater spatial uniformity and extent of biocementation. The LCSA outcomes also illustrate tension between the environmental benefits afforded by NH4+ byproduct removal and the life cycle impacts and costs associated with this removal. For the specific testing conditions, the injection of 1.8 pore volumes of rinse solutions to remove generated NH4+ byproducts following biocementation was found to minimize environmental impacts; however, further refinement of such approaches will likely result from future field-scale applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Elias Marvinney; Jin Wook Ro; Alissa Kendall;doi: 10.3390/en13123195
Perennial cropping systems, such as almond orchards and vineyards, increasingly dominate California’s agricultural landscape. In California’s leading agricultural region, the Central Valley, woody perennials comprise about half of total farmland. Woody perennial orchards produce high value food crops such as almonds, but also generate significant woody biomass which, where feasible, is used to generate biomass-derived electricity. Because of its semi-arid climate, California agriculture is heavily dependent on irrigation, which in some regions, requires energy-intensive pumping processes for both surface and groundwater. This research study explores the tradeoffs in economic, energy and water efficiency, considering the response of almond orchards to water application rates, using a life cycle basis for calculations and considering water scarcity, to reveal one part of the food-energy-water nexus. Findings indicate economic efficiency, represented by business-as-usual practices by growers, and which prioritizes almond yield, does not correspond to the lowest net-energy consumption (i.e. energy consumption minus bioenergy production). Bioenergy production follows a parabolic relationship with applied water, due to almond yield and growth response to water availability. Thus, the net energy footprint of almond production is minimized at about −45% of business-as-usual applied water, at odds with the economic demands of the almond industry that prioritize high value food production.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Elias Marvinney; Jin Wook Ro; Alissa Kendall;doi: 10.3390/en13123195
Perennial cropping systems, such as almond orchards and vineyards, increasingly dominate California’s agricultural landscape. In California’s leading agricultural region, the Central Valley, woody perennials comprise about half of total farmland. Woody perennial orchards produce high value food crops such as almonds, but also generate significant woody biomass which, where feasible, is used to generate biomass-derived electricity. Because of its semi-arid climate, California agriculture is heavily dependent on irrigation, which in some regions, requires energy-intensive pumping processes for both surface and groundwater. This research study explores the tradeoffs in economic, energy and water efficiency, considering the response of almond orchards to water application rates, using a life cycle basis for calculations and considering water scarcity, to reveal one part of the food-energy-water nexus. Findings indicate economic efficiency, represented by business-as-usual practices by growers, and which prioritizes almond yield, does not correspond to the lowest net-energy consumption (i.e. energy consumption minus bioenergy production). Bioenergy production follows a parabolic relationship with applied water, due to almond yield and growth response to water availability. Thus, the net energy footprint of almond production is minimized at about −45% of business-as-usual applied water, at odds with the economic demands of the almond industry that prioritize high value food production.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Korea (Republic of)Publisher:Elsevier BV Wang, T; Lee, IS; Kendall, A; Harvey, J; Lee, EB; Kim, C;Abstract This paper describes a pavement life cycle assessment (LCA) model developed to evaluate energy use and greenhouse gas (GHG) emissions from pavement rehabilitation strategies. The LCA model analyzes the energy and GHG emissions associated with material production, construction and pavement use, which includes the effects of pavement rolling resistance on vehicle operation. The model was used to evaluate a set of case studies of pavement rehabilitation for both asphalt and concrete surfaces with different rolling resistances and traffic levels. The primary goal of the case studies is to evaluate the effect of rolling resistance on the life cycle performance of pavements, not to compare asphalt and concrete pavements. Energy and GHG emission savings from pavement rehabilitation are compared with an alternative where no rehabilitation occurs, only routine maintenance of damaged pavement. The results of the case studies show that for highway sections with high traffic volumes the energy and GHG savings accrued during the use phase due to reduced rolling resistance can be significantly larger than the energy use and GHG emissions from material production and construction, with the extent of the benefit dependent on constructed smoothness. These savings can be larger than those from other strategies to reduce highway transportation energy use and emissions, such as projected improvements in vehicle fuel economy. For low traffic volume highways, the smoothness obtained by the contractor and materials used have a more significant effect on the performance of the rehabilitation, and may result in a net increase in energy use and GHG emissions if low traffic volumes and poor construction quality occur together.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Korea (Republic of)Publisher:Elsevier BV Wang, T; Lee, IS; Kendall, A; Harvey, J; Lee, EB; Kim, C;Abstract This paper describes a pavement life cycle assessment (LCA) model developed to evaluate energy use and greenhouse gas (GHG) emissions from pavement rehabilitation strategies. The LCA model analyzes the energy and GHG emissions associated with material production, construction and pavement use, which includes the effects of pavement rolling resistance on vehicle operation. The model was used to evaluate a set of case studies of pavement rehabilitation for both asphalt and concrete surfaces with different rolling resistances and traffic levels. The primary goal of the case studies is to evaluate the effect of rolling resistance on the life cycle performance of pavements, not to compare asphalt and concrete pavements. Energy and GHG emission savings from pavement rehabilitation are compared with an alternative where no rehabilitation occurs, only routine maintenance of damaged pavement. The results of the case studies show that for highway sections with high traffic volumes the energy and GHG savings accrued during the use phase due to reduced rolling resistance can be significantly larger than the energy use and GHG emissions from material production and construction, with the extent of the benefit dependent on constructed smoothness. These savings can be larger than those from other strategies to reduce highway transportation energy use and emissions, such as projected improvements in vehicle fuel economy. For low traffic volume highways, the smoothness obtained by the contractor and materials used have a more significant effect on the performance of the rehabilitation, and may result in a net increase in energy use and GHG emissions if low traffic volumes and poor construction quality occur together.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Alissa Kendall; Juhong Yuan;pmid: 23490811
Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition.
Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Alissa Kendall; Juhong Yuan;pmid: 23490811
Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition.
Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Lindsay Price; Alissa Kendall;SummaryMeta‐analyses of life cycle assessments (LCAs) have become increasingly important in the context of renewable energy technologies and the decisions and policies that influence their adoption. However, a lack of transparency in reporting modeling assumptions, data, and results precludes normalizing across incommensurate system boundaries or key assumptions. This normalization step is critical for conducting valid meta‐analyses.Thus it is necessary to establish clear methods for assessing transparency and to develop conventions for LCA reporting that promote future comparisons. While concerns over transparency in LCA have long been discussed in the literature, the methods proposed to address these concerns have not focused on the transparency and reporting characteristics required for performing meta‐analyses. In this study we identify guidelines for assessing reporting transparency that anticipate the needs of meta‐analyses of LCA applied to renewable energy technologies.These guidelines were developed after an attempt to perform a meta‐analysis on wind turbine LCAs of 1 megawatt and larger, with the goal of determining how life cycle performance, as measured by global warming intensity, might trend with turbine size. The objective was to normalize system boundaries and environmental conditions, and reinterpret global warming potential with new impact assessment methods. Previous wind LCAs were reviewed and assessed for reporting transparency. Only a small subset of studies proved to be sufficiently transparent for the normalization of system boundaries and modeling assumptions required for meta‐analyses.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Lindsay Price; Alissa Kendall;SummaryMeta‐analyses of life cycle assessments (LCAs) have become increasingly important in the context of renewable energy technologies and the decisions and policies that influence their adoption. However, a lack of transparency in reporting modeling assumptions, data, and results precludes normalizing across incommensurate system boundaries or key assumptions. This normalization step is critical for conducting valid meta‐analyses.Thus it is necessary to establish clear methods for assessing transparency and to develop conventions for LCA reporting that promote future comparisons. While concerns over transparency in LCA have long been discussed in the literature, the methods proposed to address these concerns have not focused on the transparency and reporting characteristics required for performing meta‐analyses. In this study we identify guidelines for assessing reporting transparency that anticipate the needs of meta‐analyses of LCA applied to renewable energy technologies.These guidelines were developed after an attempt to perform a meta‐analysis on wind turbine LCAs of 1 megawatt and larger, with the goal of determining how life cycle performance, as measured by global warming intensity, might trend with turbine size. The objective was to normalize system boundaries and environmental conditions, and reinterpret global warming potential with new impact assessment methods. Previous wind LCAs were reviewed and assessed for reporting transparency. Only a small subset of studies proved to be sufficiently transparent for the normalization of system boundaries and modeling assumptions required for meta‐analyses.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: H. Deng; Alissa Kendall; Kiara S. Winans;Abstract The challenges of balancing industrial development, environmental and human health, and economic growth in China and elsewhere in the world are drivers for recent resource use and low-carbon development strategies that include the application of the circular economy (CE) concept. A central theme of the CE concept is the valuation of materials within a closed-looped system with the aim to allow for natural resource use while reducing pollution or avoiding resource constraints and sustaining economic growth. The objectives of this study are (1) to review the history of the CE concept to provide a context for (2) a critical examination of how it is applied currently. Thematic categories are used to organize the literature review results including policy instruments and approaches; value chains, material flows, and products; and technology, organizational, and social innovation. The literature review illustrates the variability in CE project success and failure over time and by region. CE successes, key challenges, and research gaps are identified. The literature review results provide useful information for researchers as well as multi-stakeholder groups who seek to define the CE concept in practical terms, and to consider potential challenges and opportunities it presents when implemented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu719 citations 719 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: H. Deng; Alissa Kendall; Kiara S. Winans;Abstract The challenges of balancing industrial development, environmental and human health, and economic growth in China and elsewhere in the world are drivers for recent resource use and low-carbon development strategies that include the application of the circular economy (CE) concept. A central theme of the CE concept is the valuation of materials within a closed-looped system with the aim to allow for natural resource use while reducing pollution or avoiding resource constraints and sustaining economic growth. The objectives of this study are (1) to review the history of the CE concept to provide a context for (2) a critical examination of how it is applied currently. Thematic categories are used to organize the literature review results including policy instruments and approaches; value chains, material flows, and products; and technology, organizational, and social innovation. The literature review illustrates the variability in CE project success and failure over time and by region. CE successes, key challenges, and research gaps are identified. The literature review results provide useful information for researchers as well as multi-stakeholder groups who seek to define the CE concept in practical terms, and to consider potential challenges and opportunities it presents when implemented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu719 citations 719 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United StatesPublisher:American Chemical Society (ACS) Funded by:NSF | CAREER: CAS- Climate: Eng...NSF| CAREER: CAS- Climate: Engineering greenhouse gas-sequestering infrastructure materials through integrated life cycle and material performance analysisElisabeth Van Roijen; Seth Kane; Jin Fan; Josefine A. Olsson; Baishakhi Bose; Thomas P. Hendrickson; Sarah L. Nordahl; Alissa Kendall; Corinne D. Scown; Sabbie A. Miller;Transforming building materials from net life-cycle CO2e emitters to carbon sinks is a key pathway towards decarbonizing the industrial sector. Current life-cycle assessments of materials (particularly "low-carbon" materials) often focus on cradle-to-gate emissions, which can exclude emissions and uptake (i.e., fluxes) later in the materials' life-cycle. Further, conventional CO2e emission characterization disregards the dynamic effects of the timing of emissions and uptake on cumulative radiative forcing from processes like manufacturing, biomass growth, and the decadal carbon storage in long-lived building materials. This work presents a framework to analyze the cradle-to-grave CO2e balance of building materials using a time-dependent global warming potential calculation. We apply this framework in the dynamic accounting of carbon uptake in the built environment (D-CUBE) tool and examine two case studies: concrete and cross-laminated timber (CLT). When accounting for dynamic effects, the long storage time of biogenic carbon in CLT results in reduced warming, while the slow rate of uptake via concrete carbonation does not result in significant reductions in global warming. The D-CUBE tool allows for consistent comparisons across materials and emissions mitigation strategies at varying life-cycle stages and can be adapted to other materials or systems with different lifespans and applications. The flexibility of D-CUBE and the ability to identify CO2e emission hot-spot life-cycle stages will be instrumental in identifying pathways to achieving net-carbon-sequestering building materials.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United StatesPublisher:American Chemical Society (ACS) Funded by:NSF | CAREER: CAS- Climate: Eng...NSF| CAREER: CAS- Climate: Engineering greenhouse gas-sequestering infrastructure materials through integrated life cycle and material performance analysisElisabeth Van Roijen; Seth Kane; Jin Fan; Josefine A. Olsson; Baishakhi Bose; Thomas P. Hendrickson; Sarah L. Nordahl; Alissa Kendall; Corinne D. Scown; Sabbie A. Miller;Transforming building materials from net life-cycle CO2e emitters to carbon sinks is a key pathway towards decarbonizing the industrial sector. Current life-cycle assessments of materials (particularly "low-carbon" materials) often focus on cradle-to-gate emissions, which can exclude emissions and uptake (i.e., fluxes) later in the materials' life-cycle. Further, conventional CO2e emission characterization disregards the dynamic effects of the timing of emissions and uptake on cumulative radiative forcing from processes like manufacturing, biomass growth, and the decadal carbon storage in long-lived building materials. This work presents a framework to analyze the cradle-to-grave CO2e balance of building materials using a time-dependent global warming potential calculation. We apply this framework in the dynamic accounting of carbon uptake in the built environment (D-CUBE) tool and examine two case studies: concrete and cross-laminated timber (CLT). When accounting for dynamic effects, the long storage time of biogenic carbon in CLT results in reduced warming, while the slow rate of uptake via concrete carbonation does not result in significant reductions in global warming. The D-CUBE tool allows for consistent comparisons across materials and emissions mitigation strategies at varying life-cycle stages and can be adapted to other materials or systems with different lifespans and applications. The flexibility of D-CUBE and the ability to identify CO2e emission hot-spot life-cycle stages will be instrumental in identifying pathways to achieving net-carbon-sequestering building materials.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Alissa Kendall;Purpose The common practice of summing greenhouse gas (GHG) emissions and applying global warming potentials (GWPs) to calculate CO2 equivalents misrepresents the global warming effects of emissions that occur over a product or system’s life cycle at a particular time in the future. The two primary purposes of this work are to develop an approach to correct for this distortion that can (1) be feasibly implemented by life cycle assessment and carbon footprint practitioners and (2) results in units of CO2 equivalent. Units of CO2 equilavent allow for easy integration in current reporting and policy frameworks.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu128 citations 128 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Alissa Kendall;Purpose The common practice of summing greenhouse gas (GHG) emissions and applying global warming potentials (GWPs) to calculate CO2 equivalents misrepresents the global warming effects of emissions that occur over a product or system’s life cycle at a particular time in the future. The two primary purposes of this work are to develop an approach to correct for this distortion that can (1) be feasibly implemented by life cycle assessment and carbon footprint practitioners and (2) results in units of CO2 equivalent. Units of CO2 equilavent allow for easy integration in current reporting and policy frameworks.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu128 citations 128 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Jessica Dunn; Kabian Ritter; Jesús M. Velázquez; Alissa Kendall;doi: 10.1111/jiec.13414
AbstractLithium‐ion batteries (LIBs) are a key technology in decarbonizing the transportation and electricity sectors, yet the use of critical materials, such as cobalt, nickel, and lithium, lead to environmental and social impacts. Reusing, repurposing, and recycling mitigate battery impacts by extending their lifespan and reducing reliance on virgin materials. Innovation that reduces demand for these problematic materials and increases battery efficiency also reduces impacts. Two examples of this technological innovation include, (1) the development of energy dense cathode chemistry containing less cobalt, a material with high social and environmental impacts; and (2) the use of columnar silicon thin film anode, which results in increased energy density compared to the commonly used graphite anode. This research assesses whether these technological innovations change the currently understood waste hierarchy, which prioritizes reuse or repurposing prior to recycling. This is of interest because retired high‐cobalt batteries could supply their constituent materials sooner if recycled immediately and be used in low‐cobalt, higher‐performing batteries. The assessment considers the life cycle environmental impacts of two end‐of‐life management routes for a high‐cobalt LIB: first, recycling the battery immediately after the first use life to produce a new, and less material intensive battery, and second, repurposing the battery for a stationary storage application followed by recycling. Findings show that battery reuse reduces life cycle environmental impacts relative to immediate recycling. Thus, from an environmental perspective, the waste hierarchy holds, and steps to retain the batteries in their highest value use, such as through repurposing, should still be prioritized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Jessica Dunn; Kabian Ritter; Jesús M. Velázquez; Alissa Kendall;doi: 10.1111/jiec.13414
AbstractLithium‐ion batteries (LIBs) are a key technology in decarbonizing the transportation and electricity sectors, yet the use of critical materials, such as cobalt, nickel, and lithium, lead to environmental and social impacts. Reusing, repurposing, and recycling mitigate battery impacts by extending their lifespan and reducing reliance on virgin materials. Innovation that reduces demand for these problematic materials and increases battery efficiency also reduces impacts. Two examples of this technological innovation include, (1) the development of energy dense cathode chemistry containing less cobalt, a material with high social and environmental impacts; and (2) the use of columnar silicon thin film anode, which results in increased energy density compared to the commonly used graphite anode. This research assesses whether these technological innovations change the currently understood waste hierarchy, which prioritizes reuse or repurposing prior to recycling. This is of interest because retired high‐cobalt batteries could supply their constituent materials sooner if recycled immediately and be used in low‐cobalt, higher‐performing batteries. The assessment considers the life cycle environmental impacts of two end‐of‐life management routes for a high‐cobalt LIB: first, recycling the battery immediately after the first use life to produce a new, and less material intensive battery, and second, repurposing the battery for a stationary storage application followed by recycling. Findings show that battery reuse reduces life cycle environmental impacts relative to immediate recycling. Thus, from an environmental perspective, the waste hierarchy holds, and steps to retain the batteries in their highest value use, such as through repurposing, should still be prioritized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.13414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Authors: Hanjiro Ambrose; Alissa Kendall;Abstract Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Elsevier BV Authors: Hanjiro Ambrose; Alissa Kendall;Abstract Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016License: CC BYFull-Text: https://escholarship.org/uc/item/83n184wdData sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaTransportation Research Part D Transport and EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Alena J. Raymond; Jason T. DeJong; Michael G. Gomez; Alissa Kendall; Alexandra C. M. San Pablo; Minyong Lee; Charles M. R. Graddy; Douglas C. Nelson;doi: 10.3390/app15031059
Microbially induced calcium carbonate precipitation (MICP) is a biomediated ground improvement technology that uses ureolytic bacteria to precipitate calcium carbonate minerals to improve the strength and stiffness of soils. MICP can be mediated by either augmented non-native or stimulated indigenous microorganisms, resulting in biocemented soils and generated aqueous ammonium (NH4+) byproducts. Although the process has been extensively investigated, the fate and transport of generated NH4+ byproducts has posed an environmental challenge and to date, their associated environmental impacts have remained poorly understood. In an effort to better quantify process impacts, a large-scale experiment was conducted involving three 3.7 m long soil columns, wherein three different ureolytic biocementation treatment approaches were employed. A life cycle sustainability assessment (LCSA) was performed to compare the environmental impacts and costs of these different MICP treatment approaches as well as evaluate the potential environmental benefits of NH4+ byproduct removal using post-treatment rinsing. The objective of this paper is to present the results of the LCSA study. LCSA results suggest that when treatments are consistent with those performed in this study, stimulation can be more sustainable than augmentation, and the use of lower ureolytic rates can further reduce process environmental impacts by achieving greater spatial uniformity and extent of biocementation. The LCSA outcomes also illustrate tension between the environmental benefits afforded by NH4+ byproduct removal and the life cycle impacts and costs associated with this removal. For the specific testing conditions, the injection of 1.8 pore volumes of rinse solutions to remove generated NH4+ byproducts following biocementation was found to minimize environmental impacts; however, further refinement of such approaches will likely result from future field-scale applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Alena J. Raymond; Jason T. DeJong; Michael G. Gomez; Alissa Kendall; Alexandra C. M. San Pablo; Minyong Lee; Charles M. R. Graddy; Douglas C. Nelson;doi: 10.3390/app15031059
Microbially induced calcium carbonate precipitation (MICP) is a biomediated ground improvement technology that uses ureolytic bacteria to precipitate calcium carbonate minerals to improve the strength and stiffness of soils. MICP can be mediated by either augmented non-native or stimulated indigenous microorganisms, resulting in biocemented soils and generated aqueous ammonium (NH4+) byproducts. Although the process has been extensively investigated, the fate and transport of generated NH4+ byproducts has posed an environmental challenge and to date, their associated environmental impacts have remained poorly understood. In an effort to better quantify process impacts, a large-scale experiment was conducted involving three 3.7 m long soil columns, wherein three different ureolytic biocementation treatment approaches were employed. A life cycle sustainability assessment (LCSA) was performed to compare the environmental impacts and costs of these different MICP treatment approaches as well as evaluate the potential environmental benefits of NH4+ byproduct removal using post-treatment rinsing. The objective of this paper is to present the results of the LCSA study. LCSA results suggest that when treatments are consistent with those performed in this study, stimulation can be more sustainable than augmentation, and the use of lower ureolytic rates can further reduce process environmental impacts by achieving greater spatial uniformity and extent of biocementation. The LCSA outcomes also illustrate tension between the environmental benefits afforded by NH4+ byproduct removal and the life cycle impacts and costs associated with this removal. For the specific testing conditions, the injection of 1.8 pore volumes of rinse solutions to remove generated NH4+ byproducts following biocementation was found to minimize environmental impacts; however, further refinement of such approaches will likely result from future field-scale applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app15031059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Elias Marvinney; Jin Wook Ro; Alissa Kendall;doi: 10.3390/en13123195
Perennial cropping systems, such as almond orchards and vineyards, increasingly dominate California’s agricultural landscape. In California’s leading agricultural region, the Central Valley, woody perennials comprise about half of total farmland. Woody perennial orchards produce high value food crops such as almonds, but also generate significant woody biomass which, where feasible, is used to generate biomass-derived electricity. Because of its semi-arid climate, California agriculture is heavily dependent on irrigation, which in some regions, requires energy-intensive pumping processes for both surface and groundwater. This research study explores the tradeoffs in economic, energy and water efficiency, considering the response of almond orchards to water application rates, using a life cycle basis for calculations and considering water scarcity, to reveal one part of the food-energy-water nexus. Findings indicate economic efficiency, represented by business-as-usual practices by growers, and which prioritizes almond yield, does not correspond to the lowest net-energy consumption (i.e. energy consumption minus bioenergy production). Bioenergy production follows a parabolic relationship with applied water, due to almond yield and growth response to water availability. Thus, the net energy footprint of almond production is minimized at about −45% of business-as-usual applied water, at odds with the economic demands of the almond industry that prioritize high value food production.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Elias Marvinney; Jin Wook Ro; Alissa Kendall;doi: 10.3390/en13123195
Perennial cropping systems, such as almond orchards and vineyards, increasingly dominate California’s agricultural landscape. In California’s leading agricultural region, the Central Valley, woody perennials comprise about half of total farmland. Woody perennial orchards produce high value food crops such as almonds, but also generate significant woody biomass which, where feasible, is used to generate biomass-derived electricity. Because of its semi-arid climate, California agriculture is heavily dependent on irrigation, which in some regions, requires energy-intensive pumping processes for both surface and groundwater. This research study explores the tradeoffs in economic, energy and water efficiency, considering the response of almond orchards to water application rates, using a life cycle basis for calculations and considering water scarcity, to reveal one part of the food-energy-water nexus. Findings indicate economic efficiency, represented by business-as-usual practices by growers, and which prioritizes almond yield, does not correspond to the lowest net-energy consumption (i.e. energy consumption minus bioenergy production). Bioenergy production follows a parabolic relationship with applied water, due to almond yield and growth response to water availability. Thus, the net energy footprint of almond production is minimized at about −45% of business-as-usual applied water, at odds with the economic demands of the almond industry that prioritize high value food production.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3195/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Korea (Republic of)Publisher:Elsevier BV Wang, T; Lee, IS; Kendall, A; Harvey, J; Lee, EB; Kim, C;Abstract This paper describes a pavement life cycle assessment (LCA) model developed to evaluate energy use and greenhouse gas (GHG) emissions from pavement rehabilitation strategies. The LCA model analyzes the energy and GHG emissions associated with material production, construction and pavement use, which includes the effects of pavement rolling resistance on vehicle operation. The model was used to evaluate a set of case studies of pavement rehabilitation for both asphalt and concrete surfaces with different rolling resistances and traffic levels. The primary goal of the case studies is to evaluate the effect of rolling resistance on the life cycle performance of pavements, not to compare asphalt and concrete pavements. Energy and GHG emission savings from pavement rehabilitation are compared with an alternative where no rehabilitation occurs, only routine maintenance of damaged pavement. The results of the case studies show that for highway sections with high traffic volumes the energy and GHG savings accrued during the use phase due to reduced rolling resistance can be significantly larger than the energy use and GHG emissions from material production and construction, with the extent of the benefit dependent on constructed smoothness. These savings can be larger than those from other strategies to reduce highway transportation energy use and emissions, such as projected improvements in vehicle fuel economy. For low traffic volume highways, the smoothness obtained by the contractor and materials used have a more significant effect on the performance of the rehabilitation, and may result in a net increase in energy use and GHG emissions if low traffic volumes and poor construction quality occur together.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Korea (Republic of)Publisher:Elsevier BV Wang, T; Lee, IS; Kendall, A; Harvey, J; Lee, EB; Kim, C;Abstract This paper describes a pavement life cycle assessment (LCA) model developed to evaluate energy use and greenhouse gas (GHG) emissions from pavement rehabilitation strategies. The LCA model analyzes the energy and GHG emissions associated with material production, construction and pavement use, which includes the effects of pavement rolling resistance on vehicle operation. The model was used to evaluate a set of case studies of pavement rehabilitation for both asphalt and concrete surfaces with different rolling resistances and traffic levels. The primary goal of the case studies is to evaluate the effect of rolling resistance on the life cycle performance of pavements, not to compare asphalt and concrete pavements. Energy and GHG emission savings from pavement rehabilitation are compared with an alternative where no rehabilitation occurs, only routine maintenance of damaged pavement. The results of the case studies show that for highway sections with high traffic volumes the energy and GHG savings accrued during the use phase due to reduced rolling resistance can be significantly larger than the energy use and GHG emissions from material production and construction, with the extent of the benefit dependent on constructed smoothness. These savings can be larger than those from other strategies to reduce highway transportation energy use and emissions, such as projected improvements in vehicle fuel economy. For low traffic volume highways, the smoothness obtained by the contractor and materials used have a more significant effect on the performance of the rehabilitation, and may result in a net increase in energy use and GHG emissions if low traffic volumes and poor construction quality occur together.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu179 citations 179 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2012.05.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Alissa Kendall; Juhong Yuan;pmid: 23490811
Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition.
Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Alissa Kendall; Juhong Yuan;pmid: 23490811
Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition.
Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in C... arrow_drop_down Current Opinion in Chemical BiologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2013.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Lindsay Price; Alissa Kendall;SummaryMeta‐analyses of life cycle assessments (LCAs) have become increasingly important in the context of renewable energy technologies and the decisions and policies that influence their adoption. However, a lack of transparency in reporting modeling assumptions, data, and results precludes normalizing across incommensurate system boundaries or key assumptions. This normalization step is critical for conducting valid meta‐analyses.Thus it is necessary to establish clear methods for assessing transparency and to develop conventions for LCA reporting that promote future comparisons. While concerns over transparency in LCA have long been discussed in the literature, the methods proposed to address these concerns have not focused on the transparency and reporting characteristics required for performing meta‐analyses. In this study we identify guidelines for assessing reporting transparency that anticipate the needs of meta‐analyses of LCA applied to renewable energy technologies.These guidelines were developed after an attempt to perform a meta‐analysis on wind turbine LCAs of 1 megawatt and larger, with the goal of determining how life cycle performance, as measured by global warming intensity, might trend with turbine size. The objective was to normalize system boundaries and environmental conditions, and reinterpret global warming potential with new impact assessment methods. Previous wind LCAs were reviewed and assessed for reporting transparency. Only a small subset of studies proved to be sufficiently transparent for the normalization of system boundaries and modeling assumptions required for meta‐analyses.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Lindsay Price; Alissa Kendall;SummaryMeta‐analyses of life cycle assessments (LCAs) have become increasingly important in the context of renewable energy technologies and the decisions and policies that influence their adoption. However, a lack of transparency in reporting modeling assumptions, data, and results precludes normalizing across incommensurate system boundaries or key assumptions. This normalization step is critical for conducting valid meta‐analyses.Thus it is necessary to establish clear methods for assessing transparency and to develop conventions for LCA reporting that promote future comparisons. While concerns over transparency in LCA have long been discussed in the literature, the methods proposed to address these concerns have not focused on the transparency and reporting characteristics required for performing meta‐analyses. In this study we identify guidelines for assessing reporting transparency that anticipate the needs of meta‐analyses of LCA applied to renewable energy technologies.These guidelines were developed after an attempt to perform a meta‐analysis on wind turbine LCAs of 1 megawatt and larger, with the goal of determining how life cycle performance, as measured by global warming intensity, might trend with turbine size. The objective was to normalize system boundaries and environmental conditions, and reinterpret global warming potential with new impact assessment methods. Previous wind LCAs were reviewed and assessed for reporting transparency. Only a small subset of studies proved to be sufficiently transparent for the normalization of system boundaries and modeling assumptions required for meta‐analyses.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-9290.2011.00458.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: H. Deng; Alissa Kendall; Kiara S. Winans;Abstract The challenges of balancing industrial development, environmental and human health, and economic growth in China and elsewhere in the world are drivers for recent resource use and low-carbon development strategies that include the application of the circular economy (CE) concept. A central theme of the CE concept is the valuation of materials within a closed-looped system with the aim to allow for natural resource use while reducing pollution or avoiding resource constraints and sustaining economic growth. The objectives of this study are (1) to review the history of the CE concept to provide a context for (2) a critical examination of how it is applied currently. Thematic categories are used to organize the literature review results including policy instruments and approaches; value chains, material flows, and products; and technology, organizational, and social innovation. The literature review illustrates the variability in CE project success and failure over time and by region. CE successes, key challenges, and research gaps are identified. The literature review results provide useful information for researchers as well as multi-stakeholder groups who seek to define the CE concept in practical terms, and to consider potential challenges and opportunities it presents when implemented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu719 citations 719 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: H. Deng; Alissa Kendall; Kiara S. Winans;Abstract The challenges of balancing industrial development, environmental and human health, and economic growth in China and elsewhere in the world are drivers for recent resource use and low-carbon development strategies that include the application of the circular economy (CE) concept. A central theme of the CE concept is the valuation of materials within a closed-looped system with the aim to allow for natural resource use while reducing pollution or avoiding resource constraints and sustaining economic growth. The objectives of this study are (1) to review the history of the CE concept to provide a context for (2) a critical examination of how it is applied currently. Thematic categories are used to organize the literature review results including policy instruments and approaches; value chains, material flows, and products; and technology, organizational, and social innovation. The literature review illustrates the variability in CE project success and failure over time and by region. CE successes, key challenges, and research gaps are identified. The literature review results provide useful information for researchers as well as multi-stakeholder groups who seek to define the CE concept in practical terms, and to consider potential challenges and opportunities it presents when implemented.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu719 citations 719 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.09.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United StatesPublisher:American Chemical Society (ACS) Funded by:NSF | CAREER: CAS- Climate: Eng...NSF| CAREER: CAS- Climate: Engineering greenhouse gas-sequestering infrastructure materials through integrated life cycle and material performance analysisElisabeth Van Roijen; Seth Kane; Jin Fan; Josefine A. Olsson; Baishakhi Bose; Thomas P. Hendrickson; Sarah L. Nordahl; Alissa Kendall; Corinne D. Scown; Sabbie A. Miller;Transforming building materials from net life-cycle CO2e emitters to carbon sinks is a key pathway towards decarbonizing the industrial sector. Current life-cycle assessments of materials (particularly "low-carbon" materials) often focus on cradle-to-gate emissions, which can exclude emissions and uptake (i.e., fluxes) later in the materials' life-cycle. Further, conventional CO2e emission characterization disregards the dynamic effects of the timing of emissions and uptake on cumulative radiative forcing from processes like manufacturing, biomass growth, and the decadal carbon storage in long-lived building materials. This work presents a framework to analyze the cradle-to-grave CO2e balance of building materials using a time-dependent global warming potential calculation. We apply this framework in the dynamic accounting of carbon uptake in the built environment (D-CUBE) tool and examine two case studies: concrete and cross-laminated timber (CLT). When accounting for dynamic effects, the long storage time of biogenic carbon in CLT results in reduced warming, while the slow rate of uptake via concrete carbonation does not result in significant reductions in global warming. The D-CUBE tool allows for consistent comparisons across materials and emissions mitigation strategies at varying life-cycle stages and can be adapted to other materials or systems with different lifespans and applications. The flexibility of D-CUBE and the ability to identify CO2e emission hot-spot life-cycle stages will be instrumental in identifying pathways to achieving net-carbon-sequestering building materials.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United StatesPublisher:American Chemical Society (ACS) Funded by:NSF | CAREER: CAS- Climate: Eng...NSF| CAREER: CAS- Climate: Engineering greenhouse gas-sequestering infrastructure materials through integrated life cycle and material performance analysisElisabeth Van Roijen; Seth Kane; Jin Fan; Josefine A. Olsson; Baishakhi Bose; Thomas P. Hendrickson; Sarah L. Nordahl; Alissa Kendall; Corinne D. Scown; Sabbie A. Miller;Transforming building materials from net life-cycle CO2e emitters to carbon sinks is a key pathway towards decarbonizing the industrial sector. Current life-cycle assessments of materials (particularly "low-carbon" materials) often focus on cradle-to-gate emissions, which can exclude emissions and uptake (i.e., fluxes) later in the materials' life-cycle. Further, conventional CO2e emission characterization disregards the dynamic effects of the timing of emissions and uptake on cumulative radiative forcing from processes like manufacturing, biomass growth, and the decadal carbon storage in long-lived building materials. This work presents a framework to analyze the cradle-to-grave CO2e balance of building materials using a time-dependent global warming potential calculation. We apply this framework in the dynamic accounting of carbon uptake in the built environment (D-CUBE) tool and examine two case studies: concrete and cross-laminated timber (CLT). When accounting for dynamic effects, the long storage time of biogenic carbon in CLT results in reduced warming, while the slow rate of uptake via concrete carbonation does not result in significant reductions in global warming. The D-CUBE tool allows for consistent comparisons across materials and emissions mitigation strategies at varying life-cycle stages and can be adapted to other materials or systems with different lifespans and applications. The flexibility of D-CUBE and the ability to identify CO2e emission hot-spot life-cycle stages will be instrumental in identifying pathways to achieving net-carbon-sequestering building materials.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2025Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.5c00080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Alissa Kendall;Purpose The common practice of summing greenhouse gas (GHG) emissions and applying global warming potentials (GWPs) to calculate CO2 equivalents misrepresents the global warming effects of emissions that occur over a product or system’s life cycle at a particular time in the future. The two primary purposes of this work are to develop an approach to correct for this distortion that can (1) be feasibly implemented by life cycle assessment and carbon footprint practitioners and (2) results in units of CO2 equivalent. Units of CO2 equilavent allow for easy integration in current reporting and policy frameworks.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu128 citations 128 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Alissa Kendall;Purpose The common practice of summing greenhouse gas (GHG) emissions and applying global warming potentials (GWPs) to calculate CO2 equivalents misrepresents the global warming effects of emissions that occur over a product or system’s life cycle at a particular time in the future. The two primary purposes of this work are to develop an approach to correct for this distortion that can (1) be feasibly implemented by life cycle assessment and carbon footprint practitioners and (2) results in units of CO2 equivalent. Units of CO2 equilavent allow for easy integration in current reporting and policy frameworks.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu128 citations 128 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-012-0436-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu