- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Conference object , Preprint , Journal 2020Embargo end date: 01 Jan 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Peng Yang; Feng Liu; Zhaojian Wang; Chen Shen;This paper derives distributed conditions that guarantee the system-wide stability for power systems with nonlinear and heterogeneous bus dynamics interconnected via power network. Our conditions require each bus dynamics should satisfy certain passivity-like conditions with a large enough passivity index, a sufficient requirement of which is dictated by the steady-state power flow. The passivity indices uniformly quantify the impacts on the system-wide stability of individual bus dynamics and the coupling strength from the power network. Furthermore, taking three typical bus dynamics as examples, we show that these conditions can be easily fulfilled via proper control design. Simulations on a rudimentary 3-bus example and the IEEE 39-bus system well verify our results under both small and large disturbances. Accepted by IEEE Transactions on Power Systems
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Yi Wang; Chen Shen; Gabriela Hug;Probabilistic load flow (PLF) allows to evaluate uncertainties introduced by renewable energy sources on system operation. Ideally, the PLF calculation is implemented for an entire grid requiring all the parameters of the transmission lines and node load/generation to be available. However, in a multi-regional interconnected grid, the independent system operators (ISOs) across regions may not share the parameters of their respective areas with other ISOs. Consequently, the challenge is how to identify the functional relationship between the flows in the regional grid and the uncertain power injections of renewable generation sources across regions without full information about the entire grid. To overcome this challenge, we first propose a privacy-preserving distributed accelerated projection-based consensus algorithm for each ISO to calculate the corresponding coefficient matrix of the desired functional relationship. Then, we leverage a privacy-preserving accelerated average consensus algorithm to allow each ISO to obtain the corresponding constant vector of the same relationship. Using the two algorithms, we finally derive a privacy-preserving distributed PLF method for each ISO to analytically obtain its regional joint PLF in a fully distributed manner without revealing its parameters to other ISOs. The correctness, effectiveness, and efficiency of the proposed method are verified through a case study on the IEEE 118-bus system.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3022476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3022476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Zhiwen Wang; Chen Shen; Feng Liu; Jianhui Wang; Xiangyu Wu;With the fast growth of wind power penetration, power systems need additional flexibility to cope with wind power ramping. Several electricity markets have established requirements for flexible ramping capacity (FRC) reserves. This paper addresses two crucial issues that have rarely been discussed in the literature: 1) how to characterize wind power ramping under different forecast values and 2) how to achieve a reasonable trade-off between operational risks and FRC costs. Regarding the first issue, this paper proposes a concept of conditional distributions of wind power ramping, which is empirically verified by using simulation and real-world data. For the second issue, this paper develops an adjustable chance-constrained approach to optimally allocate FRC reserves. Equivalent tractable forms of the original problem are devised to improve computational efficiency. Tests carried out on a modified IEEE 118-bus system demonstrate the effectiveness and efficiency of the proposed method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2815651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2815651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ye Liu; Yankan Song; Zhaojian Wang; Chen Shen;In multi-infeed hybrid AC-DC (MIDC) systems, the asynchronous interconnection between regional grids, complicated system dynamics and possible emergency faults have enormous effects on the frequency stability. To address the frequency instability problems in emergency situations, this paper proposes a decentralized emergency frequency control (EFC) strategy based on coordinated droop for the MIDC system. First, a P-f droop control for LCC-HVDC systems is introduced, and the coordinated droop mechanism among LCC-HVDC systems and generators is designed. Then, to appropriately allocate the power imbalance among the LCC-HVDC systems and generators, an optimal emergency frequency control (OEFC) problem is formulated, and the optimal droop coefficients are selected in a decentralized way, which can deal with various control objectives. A Lyapunov stability analysis shows that the closed-loop equilibrium is locally asymptotically stable considering the LCC-HVDC dynamics. The effectiveness of the proposed emergency control strategy is verified through simulations.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3052251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3052251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Lu ZHANG; Ying CHEN; Chen SHEN; Wei TANG; Jun LIANG;Abstract In a hybrid AC/DC medium voltage distribution network, distributed generations (DGs), energy storage systems (ESSs), and the voltage source converters (VSCs) between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives. In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dongsheng Li; Chen Shen; Ye Liu; Ying Chen; Shaowei Huang;The dynamic security assessment of power systems needs to scan contingencies in a preselected set through time-domain simulations. With more and more inverter-based-generation, such as wind and solar power generation, integrated into power systems, electro-magnetic transient simulation is adopted. However, the complexity of simulation will increase greatly if inverter-based-generation units are modeled in detail. In order to reduce the complexity of simulation of power systems including large-scale wind farms, it is critical to develop dynamic equivalent methods for wind farms which are applicable to the expected contingency analysis. The dynamic response characteristics of permanent magnet synchronous generator-wind turbine generators (PMSG-WTGs) are not only influenced by their control strategies, but also by the operating wind speeds and the fault severities. Thus, this paper proposes a dynamic equivalent method for PMSG-WTG based wind farms considering the wind speeds and the fault severities. Firstly, this paper analyzes all possible response characteristics of a PMSG-WTG and proposes a clustering method based on the operating wind speed and the terminal voltage of each PMSG-WTG at the end of the fault. Then, a single-machine equivalent method is introduced for each group of PMSG-WTGs. For the group of PMSG-WTGs with active power ramp recovery process, an equivalent model with segmented ramp rate limitation for active current is designed. In order to obtain the clustering indicators, a simulation-based iterative method is put forward to calculate the voltage at point of common connection (PCC) of the wind farm, and a PMSG-WTG terminal voltage calculation method is further presented. Eventually, the efficiency and accuracy of the proposed method are verified by the simulation results.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3279497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3279497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Chen Shen; Zhiwen Wang;The extensive penetration of wind farms (WFs) presents challenges to the operation of distribution networks (DNs). Building a probability distribution of the aggregated wind power forecast error is of great value for decision making. However, as a result of recent government incentives, many WFs are being newly built with little historical data for training distribution models. Moreover, WFs with different stakeholders may refuse to submit the raw data to a data center for model training. To address these problems, a Gaussian mixture model (GMM) is applied to build the distribution of the aggregated wind power forecast error; then, the maximum a posteriori (MAP) estimation method is adopted to overcome the limited training data problem in GMM parameter estimation. Next, a distributed MAP estimation method is developed based on the average consensus filter algorithm to address the data privacy issue. The distribution control center is introduced into the distributed estimation process to acquire more precise estimation results and better adapt to the DN control architecture. The effectiveness of the proposed algorithm is empirically verified using historical data.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2873710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2873710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Gabriela Hug; Chen Shen;In chance-constrained OPF models, joint chance constraints (JCCs) offer a stronger guarantee on security compared to single chance constraints (SCCs). Using Boole's inequality or its improved versions to decompose JCCs into SCCs is popular, yet the conservativeness introduced is still significant. In this letter, a non-parametric iterative framework is proposed to achieve the decomposition of JCCs with negligible conservativeness. An adaptive risk allocation strategy is also proposed and embedded in the framework. Results on an IEEE test case show that the conservativeness using the framework is nearly eliminated, thereby reducing the generation cost considerably.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3072541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3072541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint 2022Embargo end date: 01 Jan 2022 SwitzerlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Gabriela Hug; Yifan Su; Chen Shen;Given the increased percentage of wind power in power systems, chance-constrained optimal power flow (CC-OPF) calculation, as a means to take wind power uncertainty into account with a guaranteed security level, is being promoted. Compared to the local CC-OPF within a regional grid, the global CC-OPF of a multi-regional interconnected grid is able to coordinate across different regions and therefore improve the economic efficiency when integrating high percentage of wind power generation. In this global problem, however, multiple regional independent system operators (ISOs) participate in the decision-making process, raising the need for distributed but coordinated approaches. Most notably, due to regulation restrictions, commercial interest, and data security, regional ISOs may refuse to share confidential information with others, including generation cost, load data, system topologies, and line parameters. But this information is needed to build and solve the global CC-OPF spanning multiple areas. To tackle these issues, this paper proposes a distributed CC-OPF method with confidentiality preservation, which enables regional ISOs to determine the optimal dispatchable generations within their regions without disclosing confidential data. This method does not require parameter tunings and will not suffer from convergence challenges. Results from IEEE test cases show that this method is highly accurate.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3200941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3200941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Publicly fundedZhiwen Wang; Chen Shen; Yin Xu; Feng Liu; Xiangyu Wu; Chen-Ching Liu;Microgrids are resources that can be used to restore critical loads after a natural disaster, enhancing resilience of a distribution network. To deal with the stochastic nature of intermittent energy resources, such as wind turbines (WTs) and photovoltaics (PVs), many methods rely on forecast information. However, some microgrids may not be equipped with power forecasting tools. To fill this gap, a risk-limiting strategy based on measurements is proposed. Gaussian mixture model (GMM) is used to represent a prior joint probability density function (PDF) of power outputs of WTs and PVs over multiple periods. As time rolls forward, the distribution of WT/PV generation is updated based the latest measurement data in a recursive manner. The updated distribution is used as an input for the risk-limiting load restoration problem, enabling an equivalent transformation of the original chance constrained problem into a mixed integer linear programming (MILP). Simulation cases on a distribution system with three microgrids demonstrate the effectiveness of the proposed method. Results also indicate that networked microgrids have better uncertainty management capabilities than stand-alone microgrids.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Preprint , Journal 2020Embargo end date: 01 Jan 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Peng Yang; Feng Liu; Zhaojian Wang; Chen Shen;This paper derives distributed conditions that guarantee the system-wide stability for power systems with nonlinear and heterogeneous bus dynamics interconnected via power network. Our conditions require each bus dynamics should satisfy certain passivity-like conditions with a large enough passivity index, a sufficient requirement of which is dictated by the steady-state power flow. The passivity indices uniformly quantify the impacts on the system-wide stability of individual bus dynamics and the coupling strength from the power network. Furthermore, taking three typical bus dynamics as examples, we show that these conditions can be easily fulfilled via proper control design. Simulations on a rudimentary 3-bus example and the IEEE 39-bus system well verify our results under both small and large disturbances. Accepted by IEEE Transactions on Power Systems
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://doi.org/10.1109/pesgm4...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2019License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2019.2951202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Yi Wang; Chen Shen; Gabriela Hug;Probabilistic load flow (PLF) allows to evaluate uncertainties introduced by renewable energy sources on system operation. Ideally, the PLF calculation is implemented for an entire grid requiring all the parameters of the transmission lines and node load/generation to be available. However, in a multi-regional interconnected grid, the independent system operators (ISOs) across regions may not share the parameters of their respective areas with other ISOs. Consequently, the challenge is how to identify the functional relationship between the flows in the regional grid and the uncertain power injections of renewable generation sources across regions without full information about the entire grid. To overcome this challenge, we first propose a privacy-preserving distributed accelerated projection-based consensus algorithm for each ISO to calculate the corresponding coefficient matrix of the desired functional relationship. Then, we leverage a privacy-preserving accelerated average consensus algorithm to allow each ISO to obtain the corresponding constant vector of the same relationship. Using the two algorithms, we finally derive a privacy-preserving distributed PLF method for each ISO to analytically obtain its regional joint PLF in a fully distributed manner without revealing its parameters to other ISOs. The correctness, effectiveness, and efficiency of the proposed method are verified through a case study on the IEEE 118-bus system.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3022476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2020.3022476&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Zhiwen Wang; Chen Shen; Feng Liu; Jianhui Wang; Xiangyu Wu;With the fast growth of wind power penetration, power systems need additional flexibility to cope with wind power ramping. Several electricity markets have established requirements for flexible ramping capacity (FRC) reserves. This paper addresses two crucial issues that have rarely been discussed in the literature: 1) how to characterize wind power ramping under different forecast values and 2) how to achieve a reasonable trade-off between operational risks and FRC costs. Regarding the first issue, this paper proposes a concept of conditional distributions of wind power ramping, which is empirically verified by using simulation and real-world data. For the second issue, this paper develops an adjustable chance-constrained approach to optimally allocate FRC reserves. Equivalent tractable forms of the original problem are devised to improve computational efficiency. Tests carried out on a modified IEEE 118-bus system demonstrate the effectiveness and efficiency of the proposed method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2815651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2815651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ye Liu; Yankan Song; Zhaojian Wang; Chen Shen;In multi-infeed hybrid AC-DC (MIDC) systems, the asynchronous interconnection between regional grids, complicated system dynamics and possible emergency faults have enormous effects on the frequency stability. To address the frequency instability problems in emergency situations, this paper proposes a decentralized emergency frequency control (EFC) strategy based on coordinated droop for the MIDC system. First, a P-f droop control for LCC-HVDC systems is introduced, and the coordinated droop mechanism among LCC-HVDC systems and generators is designed. Then, to appropriately allocate the power imbalance among the LCC-HVDC systems and generators, an optimal emergency frequency control (OEFC) problem is formulated, and the optimal droop coefficients are selected in a decentralized way, which can deal with various control objectives. A Lyapunov stability analysis shows that the closed-loop equilibrium is locally asymptotically stable considering the LCC-HVDC dynamics. The effectiveness of the proposed emergency control strategy is verified through simulations.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3052251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3052251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Lu ZHANG; Ying CHEN; Chen SHEN; Wei TANG; Jun LIANG;Abstract In a hybrid AC/DC medium voltage distribution network, distributed generations (DGs), energy storage systems (ESSs), and the voltage source converters (VSCs) between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives. In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dongsheng Li; Chen Shen; Ye Liu; Ying Chen; Shaowei Huang;The dynamic security assessment of power systems needs to scan contingencies in a preselected set through time-domain simulations. With more and more inverter-based-generation, such as wind and solar power generation, integrated into power systems, electro-magnetic transient simulation is adopted. However, the complexity of simulation will increase greatly if inverter-based-generation units are modeled in detail. In order to reduce the complexity of simulation of power systems including large-scale wind farms, it is critical to develop dynamic equivalent methods for wind farms which are applicable to the expected contingency analysis. The dynamic response characteristics of permanent magnet synchronous generator-wind turbine generators (PMSG-WTGs) are not only influenced by their control strategies, but also by the operating wind speeds and the fault severities. Thus, this paper proposes a dynamic equivalent method for PMSG-WTG based wind farms considering the wind speeds and the fault severities. Firstly, this paper analyzes all possible response characteristics of a PMSG-WTG and proposes a clustering method based on the operating wind speed and the terminal voltage of each PMSG-WTG at the end of the fault. Then, a single-machine equivalent method is introduced for each group of PMSG-WTGs. For the group of PMSG-WTGs with active power ramp recovery process, an equivalent model with segmented ramp rate limitation for active current is designed. In order to obtain the clustering indicators, a simulation-based iterative method is put forward to calculate the voltage at point of common connection (PCC) of the wind farm, and a PMSG-WTG terminal voltage calculation method is further presented. Eventually, the efficiency and accuracy of the proposed method are verified by the simulation results.
arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3279497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3279497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Chen Shen; Zhiwen Wang;The extensive penetration of wind farms (WFs) presents challenges to the operation of distribution networks (DNs). Building a probability distribution of the aggregated wind power forecast error is of great value for decision making. However, as a result of recent government incentives, many WFs are being newly built with little historical data for training distribution models. Moreover, WFs with different stakeholders may refuse to submit the raw data to a data center for model training. To address these problems, a Gaussian mixture model (GMM) is applied to build the distribution of the aggregated wind power forecast error; then, the maximum a posteriori (MAP) estimation method is adopted to overcome the limited training data problem in GMM parameter estimation. Next, a distributed MAP estimation method is developed based on the average consensus filter algorithm to address the data privacy issue. The distribution control center is introduced into the distributed estimation process to acquire more precise estimation results and better adapt to the DN control architecture. The effectiveness of the proposed algorithm is empirically verified using historical data.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2873710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2873710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Gabriela Hug; Chen Shen;In chance-constrained OPF models, joint chance constraints (JCCs) offer a stronger guarantee on security compared to single chance constraints (SCCs). Using Boole's inequality or its improved versions to decompose JCCs into SCCs is popular, yet the conservativeness introduced is still significant. In this letter, a non-parametric iterative framework is proposed to achieve the decomposition of JCCs with negligible conservativeness. An adaptive risk allocation strategy is also proposed and embedded in the framework. Results on an IEEE test case show that the conservativeness using the framework is nearly eliminated, thereby reducing the generation cost considerably.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3072541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2021.3072541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint 2022Embargo end date: 01 Jan 2022 SwitzerlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Mengshuo Jia; Gabriela Hug; Yifan Su; Chen Shen;Given the increased percentage of wind power in power systems, chance-constrained optimal power flow (CC-OPF) calculation, as a means to take wind power uncertainty into account with a guaranteed security level, is being promoted. Compared to the local CC-OPF within a regional grid, the global CC-OPF of a multi-regional interconnected grid is able to coordinate across different regions and therefore improve the economic efficiency when integrating high percentage of wind power generation. In this global problem, however, multiple regional independent system operators (ISOs) participate in the decision-making process, raising the need for distributed but coordinated approaches. Most notably, due to regulation restrictions, commercial interest, and data security, regional ISOs may refuse to share confidential information with others, including generation cost, load data, system topologies, and line parameters. But this information is needed to build and solve the global CC-OPF spanning multiple areas. To tackle these issues, this paper proposes a distributed CC-OPF method with confidentiality preservation, which enables regional ISOs to determine the optimal dispatchable generations within their regions without disclosing confidential data. This method does not require parameter tunings and will not suffer from convergence challenges. Results from IEEE test cases show that this method is highly accurate.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3200941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3200941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Publicly fundedZhiwen Wang; Chen Shen; Yin Xu; Feng Liu; Xiangyu Wu; Chen-Ching Liu;Microgrids are resources that can be used to restore critical loads after a natural disaster, enhancing resilience of a distribution network. To deal with the stochastic nature of intermittent energy resources, such as wind turbines (WTs) and photovoltaics (PVs), many methods rely on forecast information. However, some microgrids may not be equipped with power forecasting tools. To fill this gap, a risk-limiting strategy based on measurements is proposed. Gaussian mixture model (GMM) is used to represent a prior joint probability density function (PDF) of power outputs of WTs and PVs over multiple periods. As time rolls forward, the distribution of WT/PV generation is updated based the latest measurement data in a recursive manner. The updated distribution is used as an input for the risk-limiting load restoration problem, enabling an equivalent transformation of the original chance constrained problem into a mixed integer linear programming (MILP). Simulation cases on a distribution system with three microgrids demonstrate the effectiveness of the proposed method. Results also indicate that networked microgrids have better uncertainty management capabilities than stand-alone microgrids.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu