- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Rosa Espinosa-Valdemar; Alethia Vázquez-Morillas; Sara Ojeda-Benítez; Gabriela Arango-Escorcia; +4 AuthorsRosa Espinosa-Valdemar; Alethia Vázquez-Morillas; Sara Ojeda-Benítez; Gabriela Arango-Escorcia; Sonia Cabrera-Elizalde; Xochitl Quecholac-Piña; Maribel Velasco-Pérez; Perla Sotelo-Navarro;doi: 10.3390/su7056033
Waste with high biomass content generated in cities in developing countries is sent to landfills or open dumps. This research aims to degrade biomass content in urban waste through cultivation, at pilot scale, of the edible mushroom Pleurotus ostreatus. First, the number of diapers used by one baby per week was measured with a survey in day care facilities. Then, cellulose content of diapers was assessed. Finally, cultivation of P. ostreatus was carried out using as substrate a mixture of diapers with gardening waste, a co-substrate readily available at urban settings. The factors assessed were strain of P. ostreatus (grey BPR-81, white BPR-5), conditioning of the substrate (diapers with and without plastic) and co-substrate (wheat straw, grass, and withered leaves). Results show that diapers are a valuable source of biomass, as generation of diapers with urine is 15.3 kg/child/month and they contain 50.2% by weight of cellulose. The highest reductions in dry weight and volume (>64%) of substrates was achieved with the substrate diaper without plastic and co-substrate wheat straw. Although diapers with plastic and grass and leaves showed lower degradation, they achieved efficiencies that make them suitable as a co-substrate (>40%), considering that their biomass is currently confined in landfills.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7056033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7056033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:MDPI AG Authors: Nina Tsydenova; Alethia Vázquez Morillas; Álvaro Martínez Hernández; Diana Rodríguez Soria; +2 AuthorsNina Tsydenova; Alethia Vázquez Morillas; Álvaro Martínez Hernández; Diana Rodríguez Soria; Camilo Wilches; Alexandra Pehlken;doi: 10.3390/su11154114
Due to the high organic fraction in municipal solid waste (MSW) composition in Mexico City, anaerobic digestion (AD) is considered as a viable treatment method for organics in this study. The most feasible way refers to the waste from the wholesale market Central de Abasto, which is predominantly organics. This work aims to perform a business plan and discuss the barriers for AD technology in Mexico. In this case study, the cost-benefit analysis (CBA) approach is applied to estimate the profitability of the project. The net present value of this project is positive, and the model resulted in a payback period of 7 years. Identified barriers to feasibility of energy generation through biogas of MSW in Mexico include the need for large investment, low profitability through sales of electricity, and no use for generated heat. An attractive panorama for clean energy in Mexico was not evidenced, even though the Energy Reform took place in 2013. However, the environmental analysis also demonstrates a positive environmental impact of 730 kg CO2 per 1 Mg of MSW. Therefore, support incentives are needed to promote the use of other by-products of the AD process, such as heat and digestate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Xochitl Quecholac-Piña; María del Consuelo Hernández-Berriel; María del Consuelo Mañón-Salas; Rosa María Espinosa-Valdemar; +1 AuthorsXochitl Quecholac-Piña; María del Consuelo Hernández-Berriel; María del Consuelo Mañón-Salas; Rosa María Espinosa-Valdemar; Alethia Vázquez-Morillas;Plastic waste is an issue of global concern because of the environmental impact of its accumulation in waste management systems and ecosystems. Biodegradability was proposed as a solution to overcome this problem; however, most biodegradable plastics were designed to degrade under aerobic conditions, ideally fulfilled in a composting plant. These new plastics could arrive to anaerobic environments, purposely or frequently, because of their mismanagement at the end of their useful life. This review analyzes the behavior of biodegradable and conventional plastics under anaerobic conditions, specifically in anaerobic digestion systems and landfills. A review was performed in order to identify: (a) the environmental conditions found in anaerobic digestion processes and landfills, as well as the mechanisms for degradation in those environments; (b) the experimental methods used for the assessment of biodegradation in anaerobic conditions; and (c) the extent of the biodegradation process for different plastics. Results show a remarkable variability of the biodegradation rate depending on the type of plastic and experimental conditions, with clearly better performance in anaerobic digestion systems, where temperature, water content, and inoculum are strictly controlled. The majority of the studied plastics showed that thermophilic conditions increase degradation. It should not be assumed that plastics designed to be degraded aerobically will biodegrade under anaerobic conditions, and an exact match must be done between the specific plastics and the end of life options that they will face.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym12010109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym12010109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:MDPI AG Authors: Nina Tsydenova; Alethia Vázquez Morillas; Arely Areanely Cruz Salas;Mexico City introduced the new legal waste norm Norma NADF-024-AMBT-2013 in July 2017. This report compares the proposed system with three alternatives: a baseline scenario with composting of organics, a scenario which involves anaerobic digestion of organics, and a mechanical–biological treatment scenario with no source separation. The comparison was done using an Analytic Hierarchy Process. Eleven different indicators were chosen for the evaluation: general waste performance indicators (landfill disposal and recycling rates), environmental indicators (greenhouse gas emissions, acid gas emissions, Biological Oxygen Demand (BOD), and mercury content in water and soil), economic indicators (investment and operation costs) ($ per Mg municipal solid waste (MSW)), and social indicators (jobs created and social acceptance). The scenario ranking based on pairwise comparison made by 5 experts from Mexico City showed that the most sustainable scenario, environmentally, socially, and economically, is that which corresponds to Norma NADF-024-AMBT-2013 with a ranking priority of 30.78%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/recycling3030045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/recycling3030045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Rosa Espinosa-Valdemar; Alethia Vázquez-Morillas; Sara Ojeda-Benítez; Gabriela Arango-Escorcia; +4 AuthorsRosa Espinosa-Valdemar; Alethia Vázquez-Morillas; Sara Ojeda-Benítez; Gabriela Arango-Escorcia; Sonia Cabrera-Elizalde; Xochitl Quecholac-Piña; Maribel Velasco-Pérez; Perla Sotelo-Navarro;doi: 10.3390/su7056033
Waste with high biomass content generated in cities in developing countries is sent to landfills or open dumps. This research aims to degrade biomass content in urban waste through cultivation, at pilot scale, of the edible mushroom Pleurotus ostreatus. First, the number of diapers used by one baby per week was measured with a survey in day care facilities. Then, cellulose content of diapers was assessed. Finally, cultivation of P. ostreatus was carried out using as substrate a mixture of diapers with gardening waste, a co-substrate readily available at urban settings. The factors assessed were strain of P. ostreatus (grey BPR-81, white BPR-5), conditioning of the substrate (diapers with and without plastic) and co-substrate (wheat straw, grass, and withered leaves). Results show that diapers are a valuable source of biomass, as generation of diapers with urine is 15.3 kg/child/month and they contain 50.2% by weight of cellulose. The highest reductions in dry weight and volume (>64%) of substrates was achieved with the substrate diaper without plastic and co-substrate wheat straw. Although diapers with plastic and grass and leaves showed lower degradation, they achieved efficiencies that make them suitable as a co-substrate (>40%), considering that their biomass is currently confined in landfills.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7056033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7056033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:MDPI AG Authors: Nina Tsydenova; Alethia Vázquez Morillas; Álvaro Martínez Hernández; Diana Rodríguez Soria; +2 AuthorsNina Tsydenova; Alethia Vázquez Morillas; Álvaro Martínez Hernández; Diana Rodríguez Soria; Camilo Wilches; Alexandra Pehlken;doi: 10.3390/su11154114
Due to the high organic fraction in municipal solid waste (MSW) composition in Mexico City, anaerobic digestion (AD) is considered as a viable treatment method for organics in this study. The most feasible way refers to the waste from the wholesale market Central de Abasto, which is predominantly organics. This work aims to perform a business plan and discuss the barriers for AD technology in Mexico. In this case study, the cost-benefit analysis (CBA) approach is applied to estimate the profitability of the project. The net present value of this project is positive, and the model resulted in a payback period of 7 years. Identified barriers to feasibility of energy generation through biogas of MSW in Mexico include the need for large investment, low profitability through sales of electricity, and no use for generated heat. An attractive panorama for clean energy in Mexico was not evidenced, even though the Energy Reform took place in 2013. However, the environmental analysis also demonstrates a positive environmental impact of 730 kg CO2 per 1 Mg of MSW. Therefore, support incentives are needed to promote the use of other by-products of the AD process, such as heat and digestate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11154114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Xochitl Quecholac-Piña; María del Consuelo Hernández-Berriel; María del Consuelo Mañón-Salas; Rosa María Espinosa-Valdemar; +1 AuthorsXochitl Quecholac-Piña; María del Consuelo Hernández-Berriel; María del Consuelo Mañón-Salas; Rosa María Espinosa-Valdemar; Alethia Vázquez-Morillas;Plastic waste is an issue of global concern because of the environmental impact of its accumulation in waste management systems and ecosystems. Biodegradability was proposed as a solution to overcome this problem; however, most biodegradable plastics were designed to degrade under aerobic conditions, ideally fulfilled in a composting plant. These new plastics could arrive to anaerobic environments, purposely or frequently, because of their mismanagement at the end of their useful life. This review analyzes the behavior of biodegradable and conventional plastics under anaerobic conditions, specifically in anaerobic digestion systems and landfills. A review was performed in order to identify: (a) the environmental conditions found in anaerobic digestion processes and landfills, as well as the mechanisms for degradation in those environments; (b) the experimental methods used for the assessment of biodegradation in anaerobic conditions; and (c) the extent of the biodegradation process for different plastics. Results show a remarkable variability of the biodegradation rate depending on the type of plastic and experimental conditions, with clearly better performance in anaerobic digestion systems, where temperature, water content, and inoculum are strictly controlled. The majority of the studied plastics showed that thermophilic conditions increase degradation. It should not be assumed that plastics designed to be degraded aerobically will biodegrade under anaerobic conditions, and an exact match must be done between the specific plastics and the end of life options that they will face.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym12010109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym12010109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:MDPI AG Authors: Nina Tsydenova; Alethia Vázquez Morillas; Arely Areanely Cruz Salas;Mexico City introduced the new legal waste norm Norma NADF-024-AMBT-2013 in July 2017. This report compares the proposed system with three alternatives: a baseline scenario with composting of organics, a scenario which involves anaerobic digestion of organics, and a mechanical–biological treatment scenario with no source separation. The comparison was done using an Analytic Hierarchy Process. Eleven different indicators were chosen for the evaluation: general waste performance indicators (landfill disposal and recycling rates), environmental indicators (greenhouse gas emissions, acid gas emissions, Biological Oxygen Demand (BOD), and mercury content in water and soil), economic indicators (investment and operation costs) ($ per Mg municipal solid waste (MSW)), and social indicators (jobs created and social acceptance). The scenario ranking based on pairwise comparison made by 5 experts from Mexico City showed that the most sustainable scenario, environmentally, socially, and economically, is that which corresponds to Norma NADF-024-AMBT-2013 with a ranking priority of 30.78%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/recycling3030045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/recycling3030045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu