Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
20 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Gholamreza Zahedi; Haslenda Hashim;

    This paper presents a general decentralized energy generation optimization model for developing countries. A mixed integer nonlinear programming model has been formulated and implemented, representing decisions regarding (1) the optimal number, locations, and sizes of various types of processing plants, (2) the amounts of biomass transported, and electricity to be transmitted between the selected locations over a selected period, and minimizes the objective function of overall generation cost. The model has been applied first for designing a decentralized energy generation system using palm oil biomass for Iskandar Malaysia region of the state of Johor, Malaysia and then extended to entire state. We investigated the benefits of more distributed types of processing networks, in terms of the overall economics and the robustness to demand variations. No change in designed decentralized energy generation system and distribution network was observed when the demand was lowered to 90%, 75% and 60% of original demand.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Gholamreza Zahedi; Haslenda Hashim;

    This paper presents a general decentralized energy generation optimization model for developing countries. A mixed integer nonlinear programming model has been formulated and implemented, representing decisions regarding (1) the optimal number, locations, and sizes of various types of processing plants, (2) the amounts of biomass transported, and electricity to be transmitted between the selected locations over a selected period, and minimizes the objective function of overall generation cost. The model has been applied first for designing a decentralized energy generation system using palm oil biomass for Iskandar Malaysia region of the state of Johor, Malaysia and then extended to entire state. We investigated the benefits of more distributed types of processing networks, in terms of the overall economics and the robustness to demand variations. No change in designed decentralized energy generation system and distribution network was observed when the demand was lowered to 90%, 75% and 60% of original demand.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bhutto, Abdul Waheed;
    Bhutto, Abdul Waheed
    ORCID
    Harvested from ORCID Public Data File

    Bhutto, Abdul Waheed in OpenAIRE
    orcid Bazmi, Aqeel Ahmed;
    Bazmi, Aqeel Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Bazmi, Aqeel Ahmed in OpenAIRE
    orcid Zahedi, Gholamreza;
    Zahedi, Gholamreza
    ORCID
    Harvested from ORCID Public Data File

    Zahedi, Gholamreza in OpenAIRE

    Diversification of fuel sources is imperative to address the energy security, climate change, and sustainable development issues; therefore, it is essential to address the energy crisis through the extensive utilization of abundant renewable energy resources, such as biomass energy, solar energy, wind energy and geothermal energy. Improving energy services for poor households in developing countries remains one of the most pressing challenges facing the development community. Earlier studies suggest in South Asia the households are likely to follow the energy ladder comprising fuels like dung, crop residue, firewood, kerosene, gobar gas, LPG, and electricity for cooking purposes. Evidence suggests that while it is possible to observe such transition in urban and semi-urban areas, the change is very slow in rural areas. In rural Pakistan, the access to commercial energy resources is limited, the majority of the households still heavily rely on traditional methods of using wood, animal waste and crop waste for domestic fuel needs. Efficiencies of use are very low and most of the potential is wasted because of non-scientific conventional technologies. Consequently there is an obligatory need to develop modern bio-energy technologies since renewable resources may serve to supplement the long-term energy needs of Pakistan to a significant level. Though the bio-resource base of Pakistan is substantial, its contribution to useful energy is low. In this paper we called attention to issues and challenges in biomass utilization for energy in Pakistan in context of sustainable development. This paper has identified areas in Pakistan where there is considerable scope to modernize biomass energy production delivery systems to provide varied energy carriers such as electricity, industrial and domestic fuel and gases. Barriers are examined over the whole biomass energy spectrum and policy issue and institutional roles and responsibilities are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    131
    citations131
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bhutto, Abdul Waheed;
    Bhutto, Abdul Waheed
    ORCID
    Harvested from ORCID Public Data File

    Bhutto, Abdul Waheed in OpenAIRE
    orcid Bazmi, Aqeel Ahmed;
    Bazmi, Aqeel Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Bazmi, Aqeel Ahmed in OpenAIRE
    orcid Zahedi, Gholamreza;
    Zahedi, Gholamreza
    ORCID
    Harvested from ORCID Public Data File

    Zahedi, Gholamreza in OpenAIRE

    Diversification of fuel sources is imperative to address the energy security, climate change, and sustainable development issues; therefore, it is essential to address the energy crisis through the extensive utilization of abundant renewable energy resources, such as biomass energy, solar energy, wind energy and geothermal energy. Improving energy services for poor households in developing countries remains one of the most pressing challenges facing the development community. Earlier studies suggest in South Asia the households are likely to follow the energy ladder comprising fuels like dung, crop residue, firewood, kerosene, gobar gas, LPG, and electricity for cooking purposes. Evidence suggests that while it is possible to observe such transition in urban and semi-urban areas, the change is very slow in rural areas. In rural Pakistan, the access to commercial energy resources is limited, the majority of the households still heavily rely on traditional methods of using wood, animal waste and crop waste for domestic fuel needs. Efficiencies of use are very low and most of the potential is wasted because of non-scientific conventional technologies. Consequently there is an obligatory need to develop modern bio-energy technologies since renewable resources may serve to supplement the long-term energy needs of Pakistan to a significant level. Though the bio-resource base of Pakistan is substantial, its contribution to useful energy is low. In this paper we called attention to issues and challenges in biomass utilization for energy in Pakistan in context of sustainable development. This paper has identified areas in Pakistan where there is considerable scope to modernize biomass energy production delivery systems to provide varied energy carriers such as electricity, industrial and domestic fuel and gases. Barriers are examined over the whole biomass energy spectrum and policy issue and institutional roles and responsibilities are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    131
    citations131
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Haslenda Hashim;
    Haslenda Hashim
    ORCID
    Harvested from ORCID Public Data File

    Haslenda Hashim in OpenAIRE
    orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Aqeel Ahmed Bazmi; orcid Gholamreza Zahedi;
    Gholamreza Zahedi
    ORCID
    Harvested from ORCID Public Data File

    Gholamreza Zahedi in OpenAIRE

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    96
    citations96
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Haslenda Hashim;
    Haslenda Hashim
    ORCID
    Harvested from ORCID Public Data File

    Haslenda Hashim in OpenAIRE
    orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Aqeel Ahmed Bazmi; orcid Gholamreza Zahedi;
    Gholamreza Zahedi
    ORCID
    Harvested from ORCID Public Data File

    Gholamreza Zahedi in OpenAIRE

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    96
    citations96
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Javed Khan;
    Javed Khan
    ORCID
    Harvested from ORCID Public Data File

    Javed Khan in OpenAIRE
    orcid Muhammad Waqas Saif-ul-Allah;
    Muhammad Waqas Saif-ul-Allah
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Waqas Saif-ul-Allah in OpenAIRE
    orcid Muhammad Abdul Qyyum;
    Muhammad Abdul Qyyum
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Abdul Qyyum in OpenAIRE
    orcid Faisal Ahmed;
    Faisal Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Faisal Ahmed in OpenAIRE
    +4 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Javed Khan;
    Javed Khan
    ORCID
    Harvested from ORCID Public Data File

    Javed Khan in OpenAIRE
    orcid Muhammad Waqas Saif-ul-Allah;
    Muhammad Waqas Saif-ul-Allah
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Waqas Saif-ul-Allah in OpenAIRE
    orcid Muhammad Abdul Qyyum;
    Muhammad Abdul Qyyum
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Abdul Qyyum in OpenAIRE
    orcid Faisal Ahmed;
    Faisal Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Faisal Ahmed in OpenAIRE
    +4 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azqa Khalid; orcid Muhammad Aslam;
    Muhammad Aslam
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Aslam in OpenAIRE
    orcid Muhammad Abdul Qyyum;
    Muhammad Abdul Qyyum
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Abdul Qyyum in OpenAIRE
    Abrar Faisal; +8 Authors

    Abstract Bioethanol has garnered a great interest as a potential energy source, mainly due to its sustainable and green nature. Generally, bioethanol is produced through the microbial conversion of biomass and biomass derived syngas. However, the dehydration and purification steps for achieving fuel-grade ethanol from the microbial production process consume tremendous amounts of energy. This high energy consumption limits the feasibility of microbial ethanol production on the commercial scale. In this context, selection of an optimal technology for product separation is essential for successful commercialization of microbially produced bioethanol. This article presents the recent developments in dehydration and purification technologies for bioethanol production using distillation and membrane based separation. Distillation and pervaporation are analyzed on the basis of the overall energy requirement, consumption, and economics. Pervaporation-assisted distillation approaches are also examined from the perspective of process systems engineering, including factors affecting the system performance. Furthermore, the role of simulation in technological development along with available mathematical models is discussed, and commercial status of pervaporation based separation is presented. Finally, the current status of the existing technology, challenges, and future research directions are identified from the perspective of achieving process sustainability on the industrial scale. Economic comparison between distillation and different hybrid schemes revealed that integrating distillation with membrane based separation techniques reduce the bioethanol production cost. Moreover, hybrid schemes that combine distillation with pervaporation, and steam stripping with vapor permeation are proved to be the best combinations for the cheapest bioethanol production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    113
    citations113
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azqa Khalid; orcid Muhammad Aslam;
    Muhammad Aslam
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Aslam in OpenAIRE
    orcid Muhammad Abdul Qyyum;
    Muhammad Abdul Qyyum
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Abdul Qyyum in OpenAIRE
    Abrar Faisal; +8 Authors

    Abstract Bioethanol has garnered a great interest as a potential energy source, mainly due to its sustainable and green nature. Generally, bioethanol is produced through the microbial conversion of biomass and biomass derived syngas. However, the dehydration and purification steps for achieving fuel-grade ethanol from the microbial production process consume tremendous amounts of energy. This high energy consumption limits the feasibility of microbial ethanol production on the commercial scale. In this context, selection of an optimal technology for product separation is essential for successful commercialization of microbially produced bioethanol. This article presents the recent developments in dehydration and purification technologies for bioethanol production using distillation and membrane based separation. Distillation and pervaporation are analyzed on the basis of the overall energy requirement, consumption, and economics. Pervaporation-assisted distillation approaches are also examined from the perspective of process systems engineering, including factors affecting the system performance. Furthermore, the role of simulation in technological development along with available mathematical models is discussed, and commercial status of pervaporation based separation is presented. Finally, the current status of the existing technology, challenges, and future research directions are identified from the perspective of achieving process sustainability on the industrial scale. Economic comparison between distillation and different hybrid schemes revealed that integrating distillation with membrane based separation techniques reduce the bioethanol production cost. Moreover, hybrid schemes that combine distillation with pervaporation, and steam stripping with vapor permeation are proved to be the best combinations for the cheapest bioethanol production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    113
    citations113
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Abdul Waheed Bhutto;
    Abdul Waheed Bhutto
    ORCID
    Harvested from ORCID Public Data File

    Abdul Waheed Bhutto in OpenAIRE
    orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Aqeel Ahmed Bazmi; orcid Gholamreza Zahedi;
    Gholamreza Zahedi
    ORCID
    Harvested from ORCID Public Data File

    Gholamreza Zahedi in OpenAIRE

    Diversification of fuel sources is imperative to address the energy security, climate change, and sustainable development issues; therefore, it is essential to address the energy crisis through the extensive utilization of abundant renewable energy resources, such as biomass energy, solar energy, wind energy and geothermal energy. Improving energy services for poor households in developing countries remains one of the most pressing challenges facing the development community. Earlier studies suggest in South Asia the households are likely to follow the energy ladder comprising fuels like dung, crop residue, firewood, kerosene, gobar gas, LPG, and electricity for cooking purposes. Evidence suggests that while it is possible to observe such transition in urban and semi-urban areas, the change is very slow in rural areas. In rural Pakistan, the access to commercial energy resources is limited, the majority of the households still heavily rely on traditional methods of using wood, animal waste and crop waste for domestic fuel needs. Efficiencies of use are very low and most of the potential is wasted because of non-scientific conventional technologies. Consequently there is an obligatory need to develop modern bio-energy technologies since renewable resources may serve to supplement the long-term energy needs of Pakistan to a significant level. Though the bio-resource base of Pakistan is substantial, its contribution to useful energy is low. In this paper we called attention to issues and challenges in biomass utilization for energy in Pakistan in context of sustainable development. This paper has identified areas in Pakistan where there is considerable scope to modernize biomass energy production delivery systems to provide varied energy carriers such as electricity, industrial and domestic fuel and gases. Barriers are examined over the whole biomass energy spectrum and policy issue and institutional roles and responsibilities are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    211
    citations211
    popularityTop 1%
    influenceTop 0.1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Abdul Waheed Bhutto;
    Abdul Waheed Bhutto
    ORCID
    Harvested from ORCID Public Data File

    Abdul Waheed Bhutto in OpenAIRE
    orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Aqeel Ahmed Bazmi; orcid Gholamreza Zahedi;
    Gholamreza Zahedi
    ORCID
    Harvested from ORCID Public Data File

    Gholamreza Zahedi in OpenAIRE

    Diversification of fuel sources is imperative to address the energy security, climate change, and sustainable development issues; therefore, it is essential to address the energy crisis through the extensive utilization of abundant renewable energy resources, such as biomass energy, solar energy, wind energy and geothermal energy. Improving energy services for poor households in developing countries remains one of the most pressing challenges facing the development community. Earlier studies suggest in South Asia the households are likely to follow the energy ladder comprising fuels like dung, crop residue, firewood, kerosene, gobar gas, LPG, and electricity for cooking purposes. Evidence suggests that while it is possible to observe such transition in urban and semi-urban areas, the change is very slow in rural areas. In rural Pakistan, the access to commercial energy resources is limited, the majority of the households still heavily rely on traditional methods of using wood, animal waste and crop waste for domestic fuel needs. Efficiencies of use are very low and most of the potential is wasted because of non-scientific conventional technologies. Consequently there is an obligatory need to develop modern bio-energy technologies since renewable resources may serve to supplement the long-term energy needs of Pakistan to a significant level. Though the bio-resource base of Pakistan is substantial, its contribution to useful energy is low. In this paper we called attention to issues and challenges in biomass utilization for energy in Pakistan in context of sustainable development. This paper has identified areas in Pakistan where there is considerable scope to modernize biomass energy production delivery systems to provide varied energy carriers such as electricity, industrial and domestic fuel and gases. Barriers are examined over the whole biomass energy spectrum and policy issue and institutional roles and responsibilities are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    211
    citations211
    popularityTop 1%
    influenceTop 0.1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Aqeel Ahmed Bazmi; orcid Gholamreza Zahedi;
    Gholamreza Zahedi
    ORCID
    Harvested from ORCID Public Data File

    Gholamreza Zahedi in OpenAIRE
    orcid Abdul Waheed Bhutto;
    Abdul Waheed Bhutto
    ORCID
    Harvested from ORCID Public Data File

    Abdul Waheed Bhutto in OpenAIRE

    Abstract Underground coal gasification (UCG) is a promising option for the future use of un-worked coal. UCG permits coal to be gasified in situ within the coal seam, via a matrix of wells. The coal is ignited and air is injected underground to sustain a fire, which is essentially used to “mine” the coal and produce a combustible synthetic gas which can be used for industrial heating, power generation or the manufacture of hydrogen, synthetic natural gas or diesel fuel. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil, and gas resources, and threat of global climate change have lead to growing interest in UCG throughout the world. The potential for UCG to access low grade, inaccessible coal resources and convert them commercially and competitively into syngas is enormous, with potential applications in power, fuel, and chemical production. This article reviews the literature on UCG and research contributions are reported UCG with main emphasis given to the chemical and physical characteristic of feedstock, process chemistry, gasifier designs, and operating conditions. This is done to provide a general background and allow the reader to understand the influence of operating variables on UCG. Thermodynamic studies of UCG with emphasis on gasifier operation optimization based on thermodynamics, biomass gasification reaction engineering and particularly recently developed kinetic models, advantages and the technical challenges for UCG, and finally, the future prospects for UCG technology are also reviewed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Energy a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Energy and Combustion Science
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    373
    citations373
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Energy a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Energy and Combustion Science
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Aqeel Ahmed Bazmi; orcid Gholamreza Zahedi;
    Gholamreza Zahedi
    ORCID
    Harvested from ORCID Public Data File

    Gholamreza Zahedi in OpenAIRE
    orcid Abdul Waheed Bhutto;
    Abdul Waheed Bhutto
    ORCID
    Harvested from ORCID Public Data File

    Abdul Waheed Bhutto in OpenAIRE

    Abstract Underground coal gasification (UCG) is a promising option for the future use of un-worked coal. UCG permits coal to be gasified in situ within the coal seam, via a matrix of wells. The coal is ignited and air is injected underground to sustain a fire, which is essentially used to “mine” the coal and produce a combustible synthetic gas which can be used for industrial heating, power generation or the manufacture of hydrogen, synthetic natural gas or diesel fuel. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil, and gas resources, and threat of global climate change have lead to growing interest in UCG throughout the world. The potential for UCG to access low grade, inaccessible coal resources and convert them commercially and competitively into syngas is enormous, with potential applications in power, fuel, and chemical production. This article reviews the literature on UCG and research contributions are reported UCG with main emphasis given to the chemical and physical characteristic of feedstock, process chemistry, gasifier designs, and operating conditions. This is done to provide a general background and allow the reader to understand the influence of operating variables on UCG. Thermodynamic studies of UCG with emphasis on gasifier operation optimization based on thermodynamics, biomass gasification reaction engineering and particularly recently developed kinetic models, advantages and the technical challenges for UCG, and finally, the future prospects for UCG technology are also reviewed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Energy a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Energy and Combustion Science
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    373
    citations373
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Energy a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Energy and Combustion Science
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Muhammad Waqas Saif-Ul-Allah;
    Muhammad Waqas Saif-Ul-Allah
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Waqas Saif-Ul-Allah in OpenAIRE
    orcid Javed Khan;
    Javed Khan
    ORCID
    Harvested from ORCID Public Data File

    Javed Khan in OpenAIRE
    orcid Faisal Ahmed;
    Faisal Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Faisal Ahmed in OpenAIRE
    Chaudhary Awais Salman; +9 Authors

    Coal-fired power plants have been used to meet the energy requirements in countries where coal reserves are abundant and are the key source of NOx emissions. Owing to the serious environmental and health concerns associated with NOx emissions, much work has been carried out to reduce NOx emissions. Sophisticated artificial intelligence (AI) techniques have been employed during the past few decades, such as least-squares support vector machine (LSSVM), artificial neural networks (ANN), long short-term memory (LSTM), and gated recurrent unit (GRU), to develop the NOx prediction model. Several studies have investigated deep neural networks (DNN) models for accurate NOx emission prediction. However, there is a need to investigate a DNN-based NOx prediction model that is accurate and computationally inexpensive. Recently, a new AI technique, convolutional neural network (CNN), has been introduced and proven superior for image class prediction accuracy. According to the best of the author’s knowledge, not much work has been done on the utilization of CNN on NOx emissions from coal-fired power plants. Therefore, this study investigated the prediction performance and computational time of one-dimensional CNN (1D-CNN) on NOx emissions data from a 500 MW coal-fired power plant. The variations of hyperparameters of LSTM, GRU, and 1D-CNN were investigated, and the performance metrics such as RMSE and computational time were recorded to obtain optimal hyperparameters. The obtained optimal values of hyperparameters of LSTM, GRU, and 1D-CNN were then employed for models’ development, and consequently, the models were tested on test data. The 1D-CNN NOx emission model improved the training efficiency in terms of RMSE by 70.6% and 60.1% compared to LSTM and GRU, respectively. Furthermore, the testing efficiency for 1D-CNN improved by 10.2% and 15.7% compared to LSTM and GRU, respectively. Moreover, 1D-CNN (26 s) reduced the training time by 83.8% and 50% compared to LSTM (160 s) and GRU (52 s), respectively. Results reveal that 1D-CNN is more accurate, more stable, and computationally inexpensive compared to LSTM and GRU on NOx emission data from the 500 MW power plant.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2022
    Data sources: DOAJ
    https://dx.doi.org/10.60692/5d...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/g6...
    Other literature type . 2022
    Data sources: Datacite
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2022
      Data sources: DOAJ
      https://dx.doi.org/10.60692/5d...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/g6...
      Other literature type . 2022
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Muhammad Waqas Saif-Ul-Allah;
    Muhammad Waqas Saif-Ul-Allah
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Waqas Saif-Ul-Allah in OpenAIRE
    orcid Javed Khan;
    Javed Khan
    ORCID
    Harvested from ORCID Public Data File

    Javed Khan in OpenAIRE
    orcid Faisal Ahmed;
    Faisal Ahmed
    ORCID
    Harvested from ORCID Public Data File

    Faisal Ahmed in OpenAIRE
    Chaudhary Awais Salman; +9 Authors

    Coal-fired power plants have been used to meet the energy requirements in countries where coal reserves are abundant and are the key source of NOx emissions. Owing to the serious environmental and health concerns associated with NOx emissions, much work has been carried out to reduce NOx emissions. Sophisticated artificial intelligence (AI) techniques have been employed during the past few decades, such as least-squares support vector machine (LSSVM), artificial neural networks (ANN), long short-term memory (LSTM), and gated recurrent unit (GRU), to develop the NOx prediction model. Several studies have investigated deep neural networks (DNN) models for accurate NOx emission prediction. However, there is a need to investigate a DNN-based NOx prediction model that is accurate and computationally inexpensive. Recently, a new AI technique, convolutional neural network (CNN), has been introduced and proven superior for image class prediction accuracy. According to the best of the author’s knowledge, not much work has been done on the utilization of CNN on NOx emissions from coal-fired power plants. Therefore, this study investigated the prediction performance and computational time of one-dimensional CNN (1D-CNN) on NOx emissions data from a 500 MW coal-fired power plant. The variations of hyperparameters of LSTM, GRU, and 1D-CNN were investigated, and the performance metrics such as RMSE and computational time were recorded to obtain optimal hyperparameters. The obtained optimal values of hyperparameters of LSTM, GRU, and 1D-CNN were then employed for models’ development, and consequently, the models were tested on test data. The 1D-CNN NOx emission model improved the training efficiency in terms of RMSE by 70.6% and 60.1% compared to LSTM and GRU, respectively. Furthermore, the testing efficiency for 1D-CNN improved by 10.2% and 15.7% compared to LSTM and GRU, respectively. Moreover, 1D-CNN (26 s) reduced the training time by 83.8% and 50% compared to LSTM (160 s) and GRU (52 s), respectively. Results reveal that 1D-CNN is more accurate, more stable, and computationally inexpensive compared to LSTM and GRU on NOx emission data from the 500 MW power plant.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Energy Research
    Article . 2022
    Data sources: DOAJ
    https://dx.doi.org/10.60692/5d...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.60692/g6...
    Other literature type . 2022
    Data sources: Datacite
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Energy Research
      Article . 2022
      Data sources: DOAJ
      https://dx.doi.org/10.60692/5d...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.60692/g6...
      Other literature type . 2022
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bhutto, A. W.;
    Bhutto, A. W.
    ORCID
    Harvested from ORCID Public Data File

    Bhutto, A. W. in OpenAIRE
    orcid Bazmi, A. A.;
    Bazmi, A. A.
    ORCID
    Harvested from ORCID Public Data File

    Bazmi, A. A. in OpenAIRE
    orcid Zahedi, G.;
    Zahedi, G.
    ORCID
    Harvested from ORCID Public Data File

    Zahedi, G. in OpenAIRE

    Water is a vital resource that supports all forms of life on earth. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. During the past two decades, the risk and reality of environmental degradation have become more apparent. Renewable Energy provides an effective option for the provision of energy services from the technical point of view while hydropower, a major source of energy in the, appears an important renewable source of energy, its viability for large-scale energy production. Hydropower is renewable, reliable, clean, and largely carbon-free, and represents a flexible peak-load technology. With most of the world's hydropower potential available for near future development, it is local interests and sovereign states that decide how to manage their water resource base. In Pakistan the availability of power had been continually falling short of the demand of 24,474 MW and as a result, the country is experiencing power shortages of varying degrees in different parts of the country. Geographically, Pakistan has been blessed with river flows that are naturally supportive to electricity generation. Considering the large potential and the intrinsic characteristics of hydropower in promoting the country's energy security and flexibility in system operation, government is tried to accelerate hydropower development through number of policy initiatives. This paper investigates the progress and challenges for hydel power generation in Pakistan according to the overall concept of sustainable development and identifies the region wise potential of hydel power in Pakistan, its current status. Barriers are examined and Policy issue and institutional roles and responsibilities are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bhutto, A. W.;
    Bhutto, A. W.
    ORCID
    Harvested from ORCID Public Data File

    Bhutto, A. W. in OpenAIRE
    orcid Bazmi, A. A.;
    Bazmi, A. A.
    ORCID
    Harvested from ORCID Public Data File

    Bazmi, A. A. in OpenAIRE
    orcid Zahedi, G.;
    Zahedi, G.
    ORCID
    Harvested from ORCID Public Data File

    Zahedi, G. in OpenAIRE

    Water is a vital resource that supports all forms of life on earth. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. During the past two decades, the risk and reality of environmental degradation have become more apparent. Renewable Energy provides an effective option for the provision of energy services from the technical point of view while hydropower, a major source of energy in the, appears an important renewable source of energy, its viability for large-scale energy production. Hydropower is renewable, reliable, clean, and largely carbon-free, and represents a flexible peak-load technology. With most of the world's hydropower potential available for near future development, it is local interests and sovereign states that decide how to manage their water resource base. In Pakistan the availability of power had been continually falling short of the demand of 24,474 MW and as a result, the country is experiencing power shortages of varying degrees in different parts of the country. Geographically, Pakistan has been blessed with river flows that are naturally supportive to electricity generation. Considering the large potential and the intrinsic characteristics of hydropower in promoting the country's energy security and flexibility in system operation, government is tried to accelerate hydropower development through number of policy initiatives. This paper investigates the progress and challenges for hydel power generation in Pakistan according to the overall concept of sustainable development and identifies the region wise potential of hydel power in Pakistan, its current status. Barriers are examined and Policy issue and institutional roles and responsibilities are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Moinuddin Ghauri; Mehmood Saleem; orcid Muhammad Suleman Tahir;
    Muhammad Suleman Tahir
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Suleman Tahir in OpenAIRE
    +5 Authors

    AbstractCoal–water slurry (CWS) has been targeted as a promising fuel and an alternative to fuel oil. CWS has numerous advantages of low and convenient transportation and high solid content. Pakistan is going through a severe energy crisis and among the top 10 countries facing energy crises reported by the United Nations. Besides, Pakistan has become the top seventh country in coal reserves (i.e., 185 billion tones) after the discovery of huge lignite coal reserves in Thar, Sind province. Previous studies investigated the use of additives to enhance CWS properties at a low shear rate and its utilization accordingly. Particularly, the present work studied the high range of shear rate to improve the properties of CWS for transportation and combustion purposes. This study on the improvement in performance of rheology properties of CWS is conducted to improve the properties by cost‐effective additives. The coal concentration varies from 20% to 60%, whereas runs were carried out with and without the cost‐effective additives. The results demonstrated that the coal slurry showed shear‐thinning property when viscosity was increased at high concentrations in the absence of additives. The addition of additive changed the rheological behavior from pseudoplastic to dilatant region. The presence of a high fraction of coal increased the apparent viscosity of CWS. The static stability test of all coal samples was performed using rod drop method at concentrations of 40% to 60%. The study found that stability was achieved earlier with a lower concentration of 40% as compared with higher concentrations of 50–60%. It is expected that this research would be helpful for the country facing adverse energy crises that badly affect the economy and other social aspects of human life.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Asia-Pacific Journal...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Asia-Pacific Journal of Chemical Engineering
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Asia-Pacific Journal...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Asia-Pacific Journal of Chemical Engineering
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aqeel Ahmed Bazmi;
    Aqeel Ahmed Bazmi
    ORCID
    Harvested from ORCID Public Data File

    Aqeel Ahmed Bazmi in OpenAIRE
    Moinuddin Ghauri; Mehmood Saleem; orcid Muhammad Suleman Tahir;
    Muhammad Suleman Tahir
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Suleman Tahir in OpenAIRE
    +5 Authors

    AbstractCoal–water slurry (CWS) has been targeted as a promising fuel and an alternative to fuel oil. CWS has numerous advantages of low and convenient transportation and high solid content. Pakistan is going through a severe energy crisis and among the top 10 countries facing energy crises reported by the United Nations. Besides, Pakistan has become the top seventh country in coal reserves (i.e., 185 billion tones) after the discovery of huge lignite coal reserves in Thar, Sind province. Previous studies investigated the use of additives to enhance CWS properties at a low shear rate and its utilization accordingly. Particularly, the present work studied the high range of shear rate to improve the properties of CWS for transportation and combustion purposes. This study on the improvement in performance of rheology properties of CWS is conducted to improve the properties by cost‐effective additives. The coal concentration varies from 20% to 60%, whereas runs were carried out with and without the cost‐effective additives. The results demonstrated that the coal slurry showed shear‐thinning property when viscosity was increased at high concentrations in the absence of additives. The addition of additive changed the rheological behavior from pseudoplastic to dilatant region. The presence of a high fraction of coal increased the apparent viscosity of CWS. The static stability test of all coal samples was performed using rod drop method at concentrations of 40% to 60%. The study found that stability was achieved earlier with a lower concentration of 40% as compared with higher concentrations of 50–60%. It is expected that this research would be helpful for the country facing adverse energy crises that badly affect the economy and other social aspects of human life.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Asia-Pacific Journal...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Asia-Pacific Journal of Chemical Engineering
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Asia-Pacific Journal...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Asia-Pacific Journal of Chemical Engineering
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph