- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 GermanyPublisher:Frontiers Media SA Funded by:DFGDFGVanessa Marzetz; Vanessa Marzetz; Elly Spijkerman; Maren Striebel; Alexander Wacker;In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.539733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.539733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Authors: Herwig Stibor; Maren Striebel; Stephan Behl;doi: 10.1890/08-1409.1
pmid: 19739364
There is widespread concern that loss of biodiversity can influence important ecosystem services. A positive relationship between diversity and productivity has been observed in investigations of terrestrial and aquatic plant communities. However, an increase in primary production (carbon assimilation) does not necessarily result in higher nutrient uptake by primary producers. There is a loose coupling between carbon assimilation and nutrient uptake in autotrophs, and their biomass carbon‐to‐nutrient ratios (stoichiometry) are flexible. We performed controlled laboratory experiments to investigate the effect of phytoplankton biodiversity on phytoplankton stoichiometry. Our results indicate that biodiversity influences carbon assimilation and nutrient uptake of phytoplankton communities in different ways, resulting in variations of biomass stoichiometry. Data from 46 lake communities also support this link. Shifts in the biomass stoichiometry of phytoplankton communities are generally attributed to environmental fluctuations in resources. However, our results show that biodiversity is also important in determining their stoichiometry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-1409.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-1409.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Costa Rica, Croatia, United Kingdom, Croatia, Italy, Costa Rica, Croatia, Germany, CroatiaPublisher:American Meteorological Society Funded by:UKRI | Iodide in the ocean:distr..., EC | NEWFELPRO, HRZZ | Appearance and interactio... +2 projectsUKRI| Iodide in the ocean:distribution and impact on iodine flux and ozone loss ,EC| NEWFELPRO ,HRZZ| Appearance and interaction of biologically important organic molecules and micronutrient metals in marine ecosystem under environmental stress ,EC| PASSME ,EC| POSEIDOMMAuthors: Stolle, Christian; Ribas-Ribas, Mariana; Badewien, Thomas H.; Barnes, Jonathan; +26 AuthorsStolle, Christian; Ribas-Ribas, Mariana; Badewien, Thomas H.; Barnes, Jonathan; Carpenter, Lucy J.; Chance, Rosie; Damgaard, Lars Riis; Quesada, Ana María Durán; Engel, Anja; Frka, Sanja; Galgani, Luisa; Gašparović, Blaženka; Gerriets, Michaela; Mustaffa, Nur Ili Hamizah; Herrmann, Hartmut; Kallajoki, Liisa; Pereira, Ryan; Radach, Franziska; Revsbech, Niels Peter; Rickard, Philippa; Saint, Adam; Salter, Matthew; Striebel, Maren; Triesch, Nadja; Uher, Guenther; Upstill-Goddard, Robert C.; van Pinxteren, Manuela; Zäncker, Birthe; Zieger, Paul; Wurl, Oliver;handle: 11365/1117546 , 10669/79969
AbstractThe sea surface microlayer (SML) at the air–sea interface is <1 mm thick, but it is physically, chemically, and biologically distinct from the underlying water and the atmosphere above. Wind-driven turbulence and solar radiation are important drivers of SML physical and biogeochemical properties. Given that the SML is involved in all air–sea exchanges of mass and energy, its response to solar radiation, especially in relation to how it regulates the air–sea exchange of climate-relevant gases and aerosols, is surprisingly poorly characterized. MILAN (Sea Surface Microlayer at Night) was an international, multidisciplinary campaign designed to specifically address this issue. In spring 2017, we deployed diverse sampling platforms (research vessels, radio-controlled catamaran, free-drifting buoy) to study full diel cycles in the coastal North Sea SML and in underlying water, and installed a land-based aerosol sampler. We also carried out concurrent ex situ experiments using several microsensors, a laboratory gas exchange tank, a solar simulator, and a sea spray simulation chamber. In this paper we outline the diversity of approaches employed and some initial results obtained during MILAN. Our observations of diel SML variability show, for example, an influence of (i) changing solar radiation on the quantity and quality of organic material and (ii) diel changes in wind intensity primarily forcing air–sea CO2 exchange. Thus, MILAN underlines the value and the need of multidiciplinary campaigns for integrating SML complexity into the context of air–sea interaction.
CORE arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIBulletin of the American Meteorological SocietyArticle . 2020Data sources: Croatian Research Information SystemBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1175/BAMS...Article . Peer-reviewedData sources: European Union Open Data PortalUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-17-0329.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 54 Powered bymore_vert CORE arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIBulletin of the American Meteorological SocietyArticle . 2020Data sources: Croatian Research Information SystemBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1175/BAMS...Article . Peer-reviewedData sources: European Union Open Data PortalUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-17-0329.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Wiley Authors: Laura Verbeek; Andrea Gall; Helmut Hillebrand; Maren Striebel;doi: 10.1111/gcb.14337
pmid: 29856108
AbstractWhile there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide‐ranging trend of nutrient decrease (re‐oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
Global Change Biolog... arrow_drop_down Electronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Electronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:Frontiers Media SA Funded by:EC | AQUACOSM-plusEC| AQUACOSM-plusKunze, Charlotte; Gerhard, Miriam; Jacob, Marrit; Franke, Niklas Alexander; Schröder, Matthias; Striebel, Maren;With increasing frequency and intensity of climate change events, it is crucial to understand how different components of temperature fluctuations affect the thermal tolerance and performance of marine primary producers. We used a controlled indoor-mesocosm set-up to test the effect of a temperature fluctuation frequency gradient on a natural phytoplankton community. Within a frequency gradient, we allowed the temperature to fluctuate from 18 ± 3°C at different rates (6, 12, 24, 36, and 48 h). The temperature fluctuation frequency gradient was contrasted to a constant temperature treatment with the same mean temperature (18°C). Phytoplankton biomass tended to increase with faster fluctuations but was lowest in the diurnal frequency treatment (24 h). In comparison with constant conditions, diurnal or slower fluctuation frequencies showed lower or comparable performance, whereas faster fluctuations showed higher performance. In addition, minor differences in community structure were observed, but species diversity remained comparable over time. Similarly, resource use efficiency and stoichiometry did not change according to fluctuation frequency treatments. We conclude that the effect of temperature fluctuations on phytoplankton biomass depends on the fluctuation frequency; this suggests that the fluctuation frequency determines how organisms average their environments. However, this trend is not driven by species identity but physiological responses. Our results also indicate that phytoplankton communities may be already well adapted to fluctuating environments and can adjust physiologically to temperature variability.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.812902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.812902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Jochen Wollschläger; Oliver Zielinski; Oliver Zielinski; Maren Striebel; Rebecca L. North; Patrick J. Neale;Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.688712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.688712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Sweden, United States, Sweden, Sweden, FinlandPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | The Impacts of Dispersal ..., NSERC, EC | BP3 +1 projectsNSF| The Impacts of Dispersal and Genetic Diversity on the Stability of Environmentally Forced Metacommunities ,NSERC ,EC| BP3 ,NSF| Combined impacts of temperature and trophic cascades in mountain lakesWilliam D. Hintz; Shelley E. Arnott; Celia C. Symons; Danielle A. Greco; Alexandra McClymont; Jennifer A. Brentrup; Miguel Cañedo-Argüelles; Alison M. Derry; Amy L. Downing; Derek K. Gray; Stephanie J. Melles; Rick A. Relyea; James A. Rusak; Catherine L. Searle; Louis Astorg; Henry K. Baker; Beatrix E. Beisner; Kathryn L. Cottingham; Zeynep Ersoy; Carmen Espinosa; Jaclyn Franceschini; Angelina T. Giorgio; Norman Göbeler; Emily Hassal; Marie-Pier Hébert; Mercedes Huynh; Samuel Hylander; Kacie L. Jonasen; Andrea E. Kirkwood; Silke Langenheder; Ola Langvall; Hjalmar Laudon; Lovisa Lind; Maria Lundgren; Lorenzo Proia; Matthew S. Schuler; Jonathan B. Shurin; Christopher F. Steiner; Maren Striebel; Simon Thibodeau; Pablo Urrutia-Cordero; Lidia Vendrell-Puigmitja; Gesa A. Weyhenmeyer;Significance The salinity of freshwater ecosystems is increasing worldwide. Given that most freshwater organisms have no recent evolutionary history with high salinity, we expect them to have a low tolerance to elevated salinity caused by road deicing salts, agricultural practices, mining operations, and climate change. Leveraging the results from a network of experiments conducted across North America and Europe, we showed that salt pollution triggers a massive loss of important zooplankton taxa, which led to increased phytoplankton biomass at many study sites. We conclude that current water quality guidelines established by governments in North America and Europe do not adequately protect lake food webs, indicating an immediate need to establish guidelines where they do not exist and to reassess existing guidelines.
SLU publication data... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/09g082ggData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaPublikationer från Karlstads UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2115033119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/09g082ggData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaPublikationer från Karlstads UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2115033119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Saudi Arabia, Spain, Saudi ArabiaPublisher:Springer Science and Business Media LLC Funded by:EC | MESOAQUAEC| MESOAQUAPanagiotis D. Dimitriou; Ana Gomes; Stefanie Schabhüttl; Albert Calbet; Robert Ptacnik; Andrey F. Sazhin; Josep M. Gasol; Sarah-Jeanne Royer; Peeter Laas; Maren Striebel; Maren Striebel; Ayse Gazihan; Soultana Zervoudaki; Kristi Altoja; Stella A. Berger; Stamatina Isari; Stamatina Isari; Rodrigo Martínez; Tatiana M. Tsagaraki; Tatiana M. Tsagaraki; Paraskevi Pitta; Jens C. Nejstgaard; Jens C. Nejstgaard; Ioulia Santi; Despoina Sousoni; Radka Ptacnikova; Stefanie Moorthi;AbstractMixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016License: CC BYFull-Text: http://www.nature.com/articles/srep29286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 169 Powered bymore_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016License: CC BYFull-Text: http://www.nature.com/articles/srep29286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 United Kingdom, Switzerland, Denmark, Finland, Finland, GermanyPublisher:Frontiers Media SA Funded by:AKA | Mechanisms and atmospheri..., DFG | Flexibility matters: Inte..., DFGAKA| Mechanisms and atmospheric importance of nitrous oxide uptake in soils ,DFG| Flexibility matters: Interplay between trait diversity and ecological dynamics using aquatic communities as model systems (DynaTrait) ,DFGNina Welti; Nina Welti; Maren Striebel; Amber J. Ulseth; Wyatt F. Cross; Stephen DeVilbiss; Patricia M. Glibert; Laodong Guo; Andrew G. Hirst; Andrew G. Hirst; Jim Hood; John S. Kominoski; Keeley L. MacNeill; Andrew S. Mehring; Jill R. Welter; Helmut Hillebrand; Helmut Hillebrand;Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.
Frontiers in Microbi... arrow_drop_down Oldenburger Online Publikations ServerArticle . 2017 . Peer-reviewedData sources: Oldenburger Online Publikations ServerUEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmicb.2017.01298Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.01298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down Oldenburger Online Publikations ServerArticle . 2017 . Peer-reviewedData sources: Oldenburger Online Publikations ServerUEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmicb.2017.01298Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.01298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Belgium, United States, United States, United Kingdom, United Kingdom, United KingdomPublisher:The Royal Society Funded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., DFG | German Centre for Integra...NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDivAuthors: Aleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; +30 AuthorsAleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; Steven A. J. Declerck; Luc De Meester; Ellen Van Donk; Lars Gamfeldt; Daniel S. Gruner; Nicole Hagenah; W. Stanley Harpole; Kevin P. Kirkman; Christopher A. Klausmeier; Michael Kleyer; Johannes M. H. Knops; Pieter Lemmens; Eric M. Lind; Elena Litchman; Jasmin Mantilla-Contreras; Koen Martens; Sandra Meier; Vanessa Minden; Joslin L. Moore; Harry Olde Venterink; Eric W. Seabloom; Ulrich Sommer; Maren Striebel; Anastasia Trenkamp; Juliane Trinogga; Jotaro Urabe; Wim Vyverman; Dedmer B. Van de Waal; Claire E. Widdicombe; Helmut Hillebrand;pmid: 27114584
pmc: PMC4843703
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: KNAW PurePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2016Data sources: Vrije Universiteit Brussel Research PortalPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: KNAW PurePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2016Data sources: Vrije Universiteit Brussel Research PortalPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 GermanyPublisher:Frontiers Media SA Funded by:DFGDFGVanessa Marzetz; Vanessa Marzetz; Elly Spijkerman; Maren Striebel; Alexander Wacker;In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.539733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Universität PotsdamArticle . 2020License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2020.539733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Authors: Herwig Stibor; Maren Striebel; Stephan Behl;doi: 10.1890/08-1409.1
pmid: 19739364
There is widespread concern that loss of biodiversity can influence important ecosystem services. A positive relationship between diversity and productivity has been observed in investigations of terrestrial and aquatic plant communities. However, an increase in primary production (carbon assimilation) does not necessarily result in higher nutrient uptake by primary producers. There is a loose coupling between carbon assimilation and nutrient uptake in autotrophs, and their biomass carbon‐to‐nutrient ratios (stoichiometry) are flexible. We performed controlled laboratory experiments to investigate the effect of phytoplankton biodiversity on phytoplankton stoichiometry. Our results indicate that biodiversity influences carbon assimilation and nutrient uptake of phytoplankton communities in different ways, resulting in variations of biomass stoichiometry. Data from 46 lake communities also support this link. Shifts in the biomass stoichiometry of phytoplankton communities are generally attributed to environmental fluctuations in resources. However, our results show that biodiversity is also important in determining their stoichiometry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-1409.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/08-1409.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Costa Rica, Croatia, United Kingdom, Croatia, Italy, Costa Rica, Croatia, Germany, CroatiaPublisher:American Meteorological Society Funded by:UKRI | Iodide in the ocean:distr..., EC | NEWFELPRO, HRZZ | Appearance and interactio... +2 projectsUKRI| Iodide in the ocean:distribution and impact on iodine flux and ozone loss ,EC| NEWFELPRO ,HRZZ| Appearance and interaction of biologically important organic molecules and micronutrient metals in marine ecosystem under environmental stress ,EC| PASSME ,EC| POSEIDOMMAuthors: Stolle, Christian; Ribas-Ribas, Mariana; Badewien, Thomas H.; Barnes, Jonathan; +26 AuthorsStolle, Christian; Ribas-Ribas, Mariana; Badewien, Thomas H.; Barnes, Jonathan; Carpenter, Lucy J.; Chance, Rosie; Damgaard, Lars Riis; Quesada, Ana María Durán; Engel, Anja; Frka, Sanja; Galgani, Luisa; Gašparović, Blaženka; Gerriets, Michaela; Mustaffa, Nur Ili Hamizah; Herrmann, Hartmut; Kallajoki, Liisa; Pereira, Ryan; Radach, Franziska; Revsbech, Niels Peter; Rickard, Philippa; Saint, Adam; Salter, Matthew; Striebel, Maren; Triesch, Nadja; Uher, Guenther; Upstill-Goddard, Robert C.; van Pinxteren, Manuela; Zäncker, Birthe; Zieger, Paul; Wurl, Oliver;handle: 11365/1117546 , 10669/79969
AbstractThe sea surface microlayer (SML) at the air–sea interface is <1 mm thick, but it is physically, chemically, and biologically distinct from the underlying water and the atmosphere above. Wind-driven turbulence and solar radiation are important drivers of SML physical and biogeochemical properties. Given that the SML is involved in all air–sea exchanges of mass and energy, its response to solar radiation, especially in relation to how it regulates the air–sea exchange of climate-relevant gases and aerosols, is surprisingly poorly characterized. MILAN (Sea Surface Microlayer at Night) was an international, multidisciplinary campaign designed to specifically address this issue. In spring 2017, we deployed diverse sampling platforms (research vessels, radio-controlled catamaran, free-drifting buoy) to study full diel cycles in the coastal North Sea SML and in underlying water, and installed a land-based aerosol sampler. We also carried out concurrent ex situ experiments using several microsensors, a laboratory gas exchange tank, a solar simulator, and a sea spray simulation chamber. In this paper we outline the diversity of approaches employed and some initial results obtained during MILAN. Our observations of diel SML variability show, for example, an influence of (i) changing solar radiation on the quantity and quality of organic material and (ii) diel changes in wind intensity primarily forcing air–sea CO2 exchange. Thus, MILAN underlines the value and the need of multidiciplinary campaigns for integrating SML complexity into the context of air–sea interaction.
CORE arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIBulletin of the American Meteorological SocietyArticle . 2020Data sources: Croatian Research Information SystemBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1175/BAMS...Article . Peer-reviewedData sources: European Union Open Data PortalUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-17-0329.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 54 Powered bymore_vert CORE arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIBulletin of the American Meteorological SocietyArticle . 2020Data sources: Croatian Research Information SystemBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: CrossrefBulletin of the American Meteorological SocietyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1175/BAMS...Article . Peer-reviewedData sources: European Union Open Data PortalUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-17-0329.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Wiley Authors: Laura Verbeek; Andrea Gall; Helmut Hillebrand; Maren Striebel;doi: 10.1111/gcb.14337
pmid: 29856108
AbstractWhile there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide‐ranging trend of nutrient decrease (re‐oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.
Global Change Biolog... arrow_drop_down Electronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Electronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:Frontiers Media SA Funded by:EC | AQUACOSM-plusEC| AQUACOSM-plusKunze, Charlotte; Gerhard, Miriam; Jacob, Marrit; Franke, Niklas Alexander; Schröder, Matthias; Striebel, Maren;With increasing frequency and intensity of climate change events, it is crucial to understand how different components of temperature fluctuations affect the thermal tolerance and performance of marine primary producers. We used a controlled indoor-mesocosm set-up to test the effect of a temperature fluctuation frequency gradient on a natural phytoplankton community. Within a frequency gradient, we allowed the temperature to fluctuate from 18 ± 3°C at different rates (6, 12, 24, 36, and 48 h). The temperature fluctuation frequency gradient was contrasted to a constant temperature treatment with the same mean temperature (18°C). Phytoplankton biomass tended to increase with faster fluctuations but was lowest in the diurnal frequency treatment (24 h). In comparison with constant conditions, diurnal or slower fluctuation frequencies showed lower or comparable performance, whereas faster fluctuations showed higher performance. In addition, minor differences in community structure were observed, but species diversity remained comparable over time. Similarly, resource use efficiency and stoichiometry did not change according to fluctuation frequency treatments. We conclude that the effect of temperature fluctuations on phytoplankton biomass depends on the fluctuation frequency; this suggests that the fluctuation frequency determines how organisms average their environments. However, this trend is not driven by species identity but physiological responses. Our results also indicate that phytoplankton communities may be already well adapted to fluctuating environments and can adjust physiologically to temperature variability.
Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.812902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.812902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Jochen Wollschläger; Oliver Zielinski; Oliver Zielinski; Maren Striebel; Rebecca L. North; Patrick J. Neale;Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.688712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.688712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Sweden, United States, Sweden, Sweden, FinlandPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | The Impacts of Dispersal ..., NSERC, EC | BP3 +1 projectsNSF| The Impacts of Dispersal and Genetic Diversity on the Stability of Environmentally Forced Metacommunities ,NSERC ,EC| BP3 ,NSF| Combined impacts of temperature and trophic cascades in mountain lakesWilliam D. Hintz; Shelley E. Arnott; Celia C. Symons; Danielle A. Greco; Alexandra McClymont; Jennifer A. Brentrup; Miguel Cañedo-Argüelles; Alison M. Derry; Amy L. Downing; Derek K. Gray; Stephanie J. Melles; Rick A. Relyea; James A. Rusak; Catherine L. Searle; Louis Astorg; Henry K. Baker; Beatrix E. Beisner; Kathryn L. Cottingham; Zeynep Ersoy; Carmen Espinosa; Jaclyn Franceschini; Angelina T. Giorgio; Norman Göbeler; Emily Hassal; Marie-Pier Hébert; Mercedes Huynh; Samuel Hylander; Kacie L. Jonasen; Andrea E. Kirkwood; Silke Langenheder; Ola Langvall; Hjalmar Laudon; Lovisa Lind; Maria Lundgren; Lorenzo Proia; Matthew S. Schuler; Jonathan B. Shurin; Christopher F. Steiner; Maren Striebel; Simon Thibodeau; Pablo Urrutia-Cordero; Lidia Vendrell-Puigmitja; Gesa A. Weyhenmeyer;Significance The salinity of freshwater ecosystems is increasing worldwide. Given that most freshwater organisms have no recent evolutionary history with high salinity, we expect them to have a low tolerance to elevated salinity caused by road deicing salts, agricultural practices, mining operations, and climate change. Leveraging the results from a network of experiments conducted across North America and Europe, we showed that salt pollution triggers a massive loss of important zooplankton taxa, which led to increased phytoplankton biomass at many study sites. We conclude that current water quality guidelines established by governments in North America and Europe do not adequately protect lake food webs, indicating an immediate need to establish guidelines where they do not exist and to reassess existing guidelines.
SLU publication data... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/09g082ggData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaPublikationer från Karlstads UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2115033119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/09g082ggData sources: Bielefeld Academic Search Engine (BASE)Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkieScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaPublikationer från Karlstads UniversitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2115033119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Saudi Arabia, Spain, Saudi ArabiaPublisher:Springer Science and Business Media LLC Funded by:EC | MESOAQUAEC| MESOAQUAPanagiotis D. Dimitriou; Ana Gomes; Stefanie Schabhüttl; Albert Calbet; Robert Ptacnik; Andrey F. Sazhin; Josep M. Gasol; Sarah-Jeanne Royer; Peeter Laas; Maren Striebel; Maren Striebel; Ayse Gazihan; Soultana Zervoudaki; Kristi Altoja; Stella A. Berger; Stamatina Isari; Stamatina Isari; Rodrigo Martínez; Tatiana M. Tsagaraki; Tatiana M. Tsagaraki; Paraskevi Pitta; Jens C. Nejstgaard; Jens C. Nejstgaard; Ioulia Santi; Despoina Sousoni; Radka Ptacnikova; Stefanie Moorthi;AbstractMixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016License: CC BYFull-Text: http://www.nature.com/articles/srep29286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 169 Powered bymore_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2016License: CC BYFull-Text: http://www.nature.com/articles/srep29286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 United Kingdom, Switzerland, Denmark, Finland, Finland, GermanyPublisher:Frontiers Media SA Funded by:AKA | Mechanisms and atmospheri..., DFG | Flexibility matters: Inte..., DFGAKA| Mechanisms and atmospheric importance of nitrous oxide uptake in soils ,DFG| Flexibility matters: Interplay between trait diversity and ecological dynamics using aquatic communities as model systems (DynaTrait) ,DFGNina Welti; Nina Welti; Maren Striebel; Amber J. Ulseth; Wyatt F. Cross; Stephen DeVilbiss; Patricia M. Glibert; Laodong Guo; Andrew G. Hirst; Andrew G. Hirst; Jim Hood; John S. Kominoski; Keeley L. MacNeill; Andrew S. Mehring; Jill R. Welter; Helmut Hillebrand; Helmut Hillebrand;Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.
Frontiers in Microbi... arrow_drop_down Oldenburger Online Publikations ServerArticle . 2017 . Peer-reviewedData sources: Oldenburger Online Publikations ServerUEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmicb.2017.01298Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.01298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down Oldenburger Online Publikations ServerArticle . 2017 . Peer-reviewedData sources: Oldenburger Online Publikations ServerUEF eRepository (University of Eastern Finland)Article . 2017License: CC BYFull-Text: http://dx.doi.org/10.3389/fmicb.2017.01298Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterQueen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2017.01298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, Belgium, United States, United States, United Kingdom, United Kingdom, United KingdomPublisher:The Royal Society Funded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., DFG | German Centre for Integra...NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDivAuthors: Aleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; +30 AuthorsAleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; Steven A. J. Declerck; Luc De Meester; Ellen Van Donk; Lars Gamfeldt; Daniel S. Gruner; Nicole Hagenah; W. Stanley Harpole; Kevin P. Kirkman; Christopher A. Klausmeier; Michael Kleyer; Johannes M. H. Knops; Pieter Lemmens; Eric M. Lind; Elena Litchman; Jasmin Mantilla-Contreras; Koen Martens; Sandra Meier; Vanessa Minden; Joslin L. Moore; Harry Olde Venterink; Eric W. Seabloom; Ulrich Sommer; Maren Striebel; Anastasia Trenkamp; Juliane Trinogga; Jotaro Urabe; Wim Vyverman; Dedmer B. Van de Waal; Claire E. Widdicombe; Helmut Hillebrand;pmid: 27114584
pmc: PMC4843703
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: KNAW PurePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2016Data sources: Vrije Universiteit Brussel Research PortalPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: KNAW PurePhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2016Data sources: Vrije Universiteit Brussel Research PortalPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu