- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionM. Faitsch; M. Wischmeier; O. Pan; O. Pan; D. Brida; Y. Feng; E. Wolfrum; U. Plank; M. Griener; B. Kurzan; M. Teschke; D. Silvagni; D. Silvagni; T. Lunt; M. Cavedon; A. Herrmann; P. David; M. Willensdorfer; I. Zammuto; M. Bernert;ASDEX Upgrade is preparing a hardware modification of its upper divertor in order to study alternative divertor configurations, like the X-divertor (XD) and the snowflake divertor (SF), that are discussed as a possible solution for the power exhaust problem. Experiments characterizing the current upper divertor in single-null (SN) configuration before and during detachment were carried out recently and interpreted by EMC3-EIRENE (Lunt et al., 2020) now including volumetric recombination. In continuation of these studies we here report on further simulations with this code extrapolating these conditions to the future upper divertor. For the same transport parameters, input power and upstream separatrix density for which the outer target (OT) of the SN is attached, the XD and SF show significant detachment at the OT accompanied by a reduction of the parallel heat flux by a factor of more than five. Despite the shallow field line incidence angles in the XD configuration the intrinsic 3D error fields from the current feeds only cause toroidal variations of the power fluxes of the order of 10%. With a hypothetical misalignment of the divertor coils by 3 cm substantial asymmetries in the power deposition profile are found, however, even those vanish when going to detached plasma conditions. In order to fully detach the plasma at the OT in the SF configuration impurities, here in the form of nitrogen, need to be puffed directly into the region of the secondary X-point in the simulation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionM. Faitsch; M. Wischmeier; O. Pan; O. Pan; D. Brida; Y. Feng; E. Wolfrum; U. Plank; M. Griener; B. Kurzan; M. Teschke; D. Silvagni; D. Silvagni; T. Lunt; M. Cavedon; A. Herrmann; P. David; M. Willensdorfer; I. Zammuto; M. Bernert;ASDEX Upgrade is preparing a hardware modification of its upper divertor in order to study alternative divertor configurations, like the X-divertor (XD) and the snowflake divertor (SF), that are discussed as a possible solution for the power exhaust problem. Experiments characterizing the current upper divertor in single-null (SN) configuration before and during detachment were carried out recently and interpreted by EMC3-EIRENE (Lunt et al., 2020) now including volumetric recombination. In continuation of these studies we here report on further simulations with this code extrapolating these conditions to the future upper divertor. For the same transport parameters, input power and upstream separatrix density for which the outer target (OT) of the SN is attached, the XD and SF show significant detachment at the OT accompanied by a reduction of the parallel heat flux by a factor of more than five. Despite the shallow field line incidence angles in the XD configuration the intrinsic 3D error fields from the current feeds only cause toroidal variations of the power fluxes of the order of 10%. With a hypothetical misalignment of the divertor coils by 3 cm substantial asymmetries in the power deposition profile are found, however, even those vanish when going to detached plasma conditions. In order to fully detach the plasma at the OT in the SF configuration impurities, here in the form of nitrogen, need to be puffed directly into the region of the secondary X-point in the simulation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV D. Silvagni; O. Grover; A. Stagni; J.W. Hughes; M.A. Miller; B. Lomanowski; G. Ciraolo; M. Dunne; T. Eich; L. Frassinetti; C. Giroud; I. Jepu; A. Kallenbach; A. Kirjasuo; A. Kuang; T. Luda; C. Perez von Thun; T. Pütterich; H.J. Sun; H. Zohm;The separatrix electron density is an important parameter for core-edge scenario integration in tokamak devices, as it influences plasma confinement, divertor detachment and disruption avoidance. This quantity has been measured in H-mode discharges on JET, ASDEX Upgrade and Alcator C-Mod by applying the same fitting function to Thomson scattering measurements, and by employing the same analysis technique based on scrape-off layer power balance. To estimate the power crossing the separatrix, the inter-ELM time derivative of the plasma energy dW/dt has been experimentally evaluated and found to be approximately a constant fraction of the absorbed heating power. Correlations between ne,sep and engineering parameters have been investigated, revealing that ne,sep scales with the divertor neutral pressure p0,div in a similar manner across all devices. Additionally, when ne,sep is normalized to the obtained p0,div dependency, no clear correlation with the plasma current is found. These observations are in agreement with the 2-point model, which suggests that the upstream separatrix density is mainly set by the recycling at the divertor target.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV D. Silvagni; O. Grover; A. Stagni; J.W. Hughes; M.A. Miller; B. Lomanowski; G. Ciraolo; M. Dunne; T. Eich; L. Frassinetti; C. Giroud; I. Jepu; A. Kallenbach; A. Kirjasuo; A. Kuang; T. Luda; C. Perez von Thun; T. Pütterich; H.J. Sun; H. Zohm;The separatrix electron density is an important parameter for core-edge scenario integration in tokamak devices, as it influences plasma confinement, divertor detachment and disruption avoidance. This quantity has been measured in H-mode discharges on JET, ASDEX Upgrade and Alcator C-Mod by applying the same fitting function to Thomson scattering measurements, and by employing the same analysis technique based on scrape-off layer power balance. To estimate the power crossing the separatrix, the inter-ELM time derivative of the plasma energy dW/dt has been experimentally evaluated and found to be approximately a constant fraction of the absorbed heating power. Correlations between ne,sep and engineering parameters have been investigated, revealing that ne,sep scales with the divertor neutral pressure p0,div in a similar manner across all devices. Additionally, when ne,sep is normalized to the obtained p0,div dependency, no clear correlation with the plasma current is found. These observations are in agreement with the 2-point model, which suggests that the upstream separatrix density is mainly set by the recycling at the divertor target.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Funded by:AKA | RADIATIVE SOLUTIONS TO PO..., EC | EUROfusionAKA| RADIATIVE SOLUTIONS TO POWER EXHAUST IN TOKAMAKS: Coupling of a burning plasma to a metallic wall in magnetically confined fusion reactors ,EC| EUROfusionParadela Pérez, I.; Groth, M.; Wischmeier, M.; Scarabosio, A.; Brida, D.; David, P.; Silvagni, D.; Coster, D.; Lunt, T.; Faitsch; M.;Pairs of ASDEX Upgrade L-mode discharges with the toroidal magnetic field, BT, in the forward and reverse directions have been used to study the impact of neoclassical drifts on the divertor plasma conditions and detachment. The evolution of the peak heat flux and the total power loads onto both the outer and the inner targets depends significantly on the toroidal field direction: increasing the core plasma density affects mainly the heat loads in the BT 0 (favourable). Ion saturation current measurements show similar trends to those of the IR heat flux data. These discrepancies are not only caused by drifts but also by different levels of radiated power in the core, thus the power across the separatrix, Psep. Tomographic reconstructions show that Psep is not constant within the entire dataset. Finally, at Ip=0.8MA, a significant reduction of the peak heat flux is observed at both targets for both field directions. On the other hand, at Ip=0.6MA, a reduction of the peak heat flux is only observed for BT < 0 at the outer target. Additionally, the onset of particle detachment is only observed at the outer target for BT < 0 with Ip=0.8MA. Keywords: ASDEX Upgrade, Upper single null, Scrape-off layer, Divertor detachment, Drifts
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Funded by:AKA | RADIATIVE SOLUTIONS TO PO..., EC | EUROfusionAKA| RADIATIVE SOLUTIONS TO POWER EXHAUST IN TOKAMAKS: Coupling of a burning plasma to a metallic wall in magnetically confined fusion reactors ,EC| EUROfusionParadela Pérez, I.; Groth, M.; Wischmeier, M.; Scarabosio, A.; Brida, D.; David, P.; Silvagni, D.; Coster, D.; Lunt, T.; Faitsch; M.;Pairs of ASDEX Upgrade L-mode discharges with the toroidal magnetic field, BT, in the forward and reverse directions have been used to study the impact of neoclassical drifts on the divertor plasma conditions and detachment. The evolution of the peak heat flux and the total power loads onto both the outer and the inner targets depends significantly on the toroidal field direction: increasing the core plasma density affects mainly the heat loads in the BT 0 (favourable). Ion saturation current measurements show similar trends to those of the IR heat flux data. These discrepancies are not only caused by drifts but also by different levels of radiated power in the core, thus the power across the separatrix, Psep. Tomographic reconstructions show that Psep is not constant within the entire dataset. Finally, at Ip=0.8MA, a significant reduction of the peak heat flux is observed at both targets for both field directions. On the other hand, at Ip=0.6MA, a reduction of the peak heat flux is only observed for BT < 0 at the outer target. Additionally, the onset of particle detachment is only observed at the outer target for BT < 0 with Ip=0.8MA. Keywords: ASDEX Upgrade, Upper single null, Scrape-off layer, Divertor detachment, Drifts
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Switzerland, SpainPublisher:Elsevier BV Funded by:EC | 3D-FIREFLUC, EC | EUROfusionEC| 3D-FIREFLUC ,EC| EUROfusionViezzer, E.; Austin, M.E.; Bernert, M.; Burrell, K.H.; Cano-Megias, P.; Chen, X.; Cruz-Zabala, D.J.; Coda, S.; Faitsch, M.; Février, O.; Gil, L.; Giroud, C.; Happel, T.; Harrer, G.F.; Hubbard, A.E.; Hughes, J.W.; Kallenbach, A.; Labit, B.; Merle, A.; Meyer, H.; Paz-Soldan, C.; Oyola, P.; Sauter, O.; Siccinio, M.; Silvagni, D.; Solano, E.R.;One of our grand challenges towards fusion energy is the achievement of a high-performance plasma core coupled to a boundary solution. The high confinement mode (H-mode) provides such a high-performance fusion core due to the build-up of an edge transport barrier leading to a pedestal. However, it usually features type-I edge localized modes (ELMs) which pose a threat for long-duration plasma operation in future fusion devices as they induce large energy fluences onto the plasma facing components and typically are projected to damage the first wall. For future fusion devices, the integration of a stationary no-ELM regime with a power exhaust solution is indispensable. Several no-ELM and small-ELM regimes have extended their operational space in the past years, with the ultimate goal of providing an alternative core–edge solution to ITER and EU-DEMO. Prominent no-ELM or small-ELM alternatives include the I-mode, QH-mode, EDA H-mode, quasi-continuous exhaust (QCE) and ‘grassy’ ELM regimes, X-point radiator scenarios and negative triangularity L-mode. The state-of-the-art, including access conditions and main signatures, of these alternative regimes is reviewed. Many of these regimes partly match the operational space of ITER and EU-DEMO, however, knowledge gaps remain. Besides compatibility with divertor detachment and a radiative mantle, these include extrapolations to high Q operations, low core collisionality, high Greenwald fractions, impurity transport, amongst others. The knowledge gaps and possible strategies to close these gaps to show their applicability to ITER and EU-DEMO are discussed. European Union 101052200 European Research Council 805162 Department of Energy DE-SC0014264
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Switzerland, SpainPublisher:Elsevier BV Funded by:EC | 3D-FIREFLUC, EC | EUROfusionEC| 3D-FIREFLUC ,EC| EUROfusionViezzer, E.; Austin, M.E.; Bernert, M.; Burrell, K.H.; Cano-Megias, P.; Chen, X.; Cruz-Zabala, D.J.; Coda, S.; Faitsch, M.; Février, O.; Gil, L.; Giroud, C.; Happel, T.; Harrer, G.F.; Hubbard, A.E.; Hughes, J.W.; Kallenbach, A.; Labit, B.; Merle, A.; Meyer, H.; Paz-Soldan, C.; Oyola, P.; Sauter, O.; Siccinio, M.; Silvagni, D.; Solano, E.R.;One of our grand challenges towards fusion energy is the achievement of a high-performance plasma core coupled to a boundary solution. The high confinement mode (H-mode) provides such a high-performance fusion core due to the build-up of an edge transport barrier leading to a pedestal. However, it usually features type-I edge localized modes (ELMs) which pose a threat for long-duration plasma operation in future fusion devices as they induce large energy fluences onto the plasma facing components and typically are projected to damage the first wall. For future fusion devices, the integration of a stationary no-ELM regime with a power exhaust solution is indispensable. Several no-ELM and small-ELM regimes have extended their operational space in the past years, with the ultimate goal of providing an alternative core–edge solution to ITER and EU-DEMO. Prominent no-ELM or small-ELM alternatives include the I-mode, QH-mode, EDA H-mode, quasi-continuous exhaust (QCE) and ‘grassy’ ELM regimes, X-point radiator scenarios and negative triangularity L-mode. The state-of-the-art, including access conditions and main signatures, of these alternative regimes is reviewed. Many of these regimes partly match the operational space of ITER and EU-DEMO, however, knowledge gaps remain. Besides compatibility with divertor detachment and a radiative mantle, these include extrapolations to high Q operations, low core collisionality, high Greenwald fractions, impurity transport, amongst others. The knowledge gaps and possible strategies to close these gaps to show their applicability to ITER and EU-DEMO are discussed. European Union 101052200 European Research Council 805162 Department of Energy DE-SC0014264
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionBrida, D.; Conway, G.D.; Adamek, J.; Silvagni, D.; David, P.; Eich, T.; Grenfell, G.; Komm, M.; Plank, U.;The electric field in the Scrape-Off Layer (SOL) of fusion plasmas is a key quantity affecting the local plasma transport and possibly also the overall plasma confinement. However, the physics determining the SOL electric field is experimentally not well investigated. In this study a systematic experimental analysis of the electric field in AUG L-mode discharges at various plasma currents, densities and heating powers is presented. In particular, the relation of the electric field to the divertor condition, as measured by Langmuir probes, is analyzed in detail by applying a simplified form of Ohm’s law. The analysis shows that the peak value of the radial electric field Er in the near SOL measured by Doppler reflectometry decreases from about 8kV/m at the lowest densities to -2kV/m at the highest densities, which is accompanied by a flattening of the outer divertor target electron temperature profiles. The electric field obtained by integrating Ohm’s law from the divertor target to the midplane agrees with Er in the near SOL within the uncertainties, evidencing the quantitative validity of the underlying model. Based on the findings about the relation between the electric field and the target conditions, a scaling to obtain the maximum of Er in the SOL in terms of upstream parameters is developed.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionBrida, D.; Conway, G.D.; Adamek, J.; Silvagni, D.; David, P.; Eich, T.; Grenfell, G.; Komm, M.; Plank, U.;The electric field in the Scrape-Off Layer (SOL) of fusion plasmas is a key quantity affecting the local plasma transport and possibly also the overall plasma confinement. However, the physics determining the SOL electric field is experimentally not well investigated. In this study a systematic experimental analysis of the electric field in AUG L-mode discharges at various plasma currents, densities and heating powers is presented. In particular, the relation of the electric field to the divertor condition, as measured by Langmuir probes, is analyzed in detail by applying a simplified form of Ohm’s law. The analysis shows that the peak value of the radial electric field Er in the near SOL measured by Doppler reflectometry decreases from about 8kV/m at the lowest densities to -2kV/m at the highest densities, which is accompanied by a flattening of the outer divertor target electron temperature profiles. The electric field obtained by integrating Ohm’s law from the divertor target to the midplane agrees with Er in the near SOL within the uncertainties, evidencing the quantitative validity of the underlying model. Based on the findings about the relation between the electric field and the target conditions, a scaling to obtain the maximum of Er in the SOL in terms of upstream parameters is developed.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Switzerland, France, SpainPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionD. Prisiazhniuk; D. Prisiazhniuk; D. Prisiazhniuk; L. Gil; L. Gil; J. R. Pinzon; J. R. Pinzon; J. R. Pinzon; D. Brida; D. Brida; Ulrich Stroth; Ulrich Stroth; Ulrich Stroth; M. Griener; M. Griener; M. Griener; Pascale Hennequin; Pascale Hennequin; P. Manz; P. Manz; P. Manz; M. Bernert; M. Bernert; D. Silvagni; D. Silvagni; D. Silvagni; Simon Freethy; Simon Freethy; Simon Freethy; F. Ryter; F. Ryter; F. Janky; F. Janky; Antoine Merle; Antoine Merle; T. Happel; T. Happel; B. Sieglin; B. Sieglin; L. Guimarais; L. Guimarais; M. Faitsch; M. Faitsch; D. Nille; D. Nille; T. Eich; T. Eich;Recent I-mode investigations from the ASDEX Upgrade tokamak are reported. It is shown that neutral-beam-injection heated I-modes can be stationary, which is important in terms of extrapolability towards future fusion devices. Furthermore, detailed studies on the weakly coherent mode are reported. In particular, experimental observations point towards its existence in L-mode, before I-mode starts. Moreover, its impact on density and temperature fluctuations is evaluated. Studies of stationary divertor heat fluxes show that in I-mode, the upstream power fall-off length is between those observed in L-mode and H-mode, and it is connected to the scrape-off layer temperature fall-off length. Moreover, analysis of transient divertor heat loads shows that intermittent turbulent events, observed in the confinement region and linked to the weakly coherent mode, are responsible for a significant part of divertor heat loads. EUROfusion Consortium grant agreement No 633053 EUROfusion Enabling Research work-package AWP15-ENR-09/IPP-02
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Switzerland, France, SpainPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionD. Prisiazhniuk; D. Prisiazhniuk; D. Prisiazhniuk; L. Gil; L. Gil; J. R. Pinzon; J. R. Pinzon; J. R. Pinzon; D. Brida; D. Brida; Ulrich Stroth; Ulrich Stroth; Ulrich Stroth; M. Griener; M. Griener; M. Griener; Pascale Hennequin; Pascale Hennequin; P. Manz; P. Manz; P. Manz; M. Bernert; M. Bernert; D. Silvagni; D. Silvagni; D. Silvagni; Simon Freethy; Simon Freethy; Simon Freethy; F. Ryter; F. Ryter; F. Janky; F. Janky; Antoine Merle; Antoine Merle; T. Happel; T. Happel; B. Sieglin; B. Sieglin; L. Guimarais; L. Guimarais; M. Faitsch; M. Faitsch; D. Nille; D. Nille; T. Eich; T. Eich;Recent I-mode investigations from the ASDEX Upgrade tokamak are reported. It is shown that neutral-beam-injection heated I-modes can be stationary, which is important in terms of extrapolability towards future fusion devices. Furthermore, detailed studies on the weakly coherent mode are reported. In particular, experimental observations point towards its existence in L-mode, before I-mode starts. Moreover, its impact on density and temperature fluctuations is evaluated. Studies of stationary divertor heat fluxes show that in I-mode, the upstream power fall-off length is between those observed in L-mode and H-mode, and it is connected to the scrape-off layer temperature fall-off length. Moreover, analysis of transient divertor heat loads shows that intermittent turbulent events, observed in the confinement region and linked to the weakly coherent mode, are responsible for a significant part of divertor heat loads. EUROfusion Consortium grant agreement No 633053 EUROfusion Enabling Research work-package AWP15-ENR-09/IPP-02
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionM. Faitsch; M. Wischmeier; O. Pan; O. Pan; D. Brida; Y. Feng; E. Wolfrum; U. Plank; M. Griener; B. Kurzan; M. Teschke; D. Silvagni; D. Silvagni; T. Lunt; M. Cavedon; A. Herrmann; P. David; M. Willensdorfer; I. Zammuto; M. Bernert;ASDEX Upgrade is preparing a hardware modification of its upper divertor in order to study alternative divertor configurations, like the X-divertor (XD) and the snowflake divertor (SF), that are discussed as a possible solution for the power exhaust problem. Experiments characterizing the current upper divertor in single-null (SN) configuration before and during detachment were carried out recently and interpreted by EMC3-EIRENE (Lunt et al., 2020) now including volumetric recombination. In continuation of these studies we here report on further simulations with this code extrapolating these conditions to the future upper divertor. For the same transport parameters, input power and upstream separatrix density for which the outer target (OT) of the SN is attached, the XD and SF show significant detachment at the OT accompanied by a reduction of the parallel heat flux by a factor of more than five. Despite the shallow field line incidence angles in the XD configuration the intrinsic 3D error fields from the current feeds only cause toroidal variations of the power fluxes of the order of 10%. With a hypothetical misalignment of the divertor coils by 3 cm substantial asymmetries in the power deposition profile are found, however, even those vanish when going to detached plasma conditions. In order to fully detach the plasma at the OT in the SF configuration impurities, here in the form of nitrogen, need to be puffed directly into the region of the secondary X-point in the simulation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionM. Faitsch; M. Wischmeier; O. Pan; O. Pan; D. Brida; Y. Feng; E. Wolfrum; U. Plank; M. Griener; B. Kurzan; M. Teschke; D. Silvagni; D. Silvagni; T. Lunt; M. Cavedon; A. Herrmann; P. David; M. Willensdorfer; I. Zammuto; M. Bernert;ASDEX Upgrade is preparing a hardware modification of its upper divertor in order to study alternative divertor configurations, like the X-divertor (XD) and the snowflake divertor (SF), that are discussed as a possible solution for the power exhaust problem. Experiments characterizing the current upper divertor in single-null (SN) configuration before and during detachment were carried out recently and interpreted by EMC3-EIRENE (Lunt et al., 2020) now including volumetric recombination. In continuation of these studies we here report on further simulations with this code extrapolating these conditions to the future upper divertor. For the same transport parameters, input power and upstream separatrix density for which the outer target (OT) of the SN is attached, the XD and SF show significant detachment at the OT accompanied by a reduction of the parallel heat flux by a factor of more than five. Despite the shallow field line incidence angles in the XD configuration the intrinsic 3D error fields from the current feeds only cause toroidal variations of the power fluxes of the order of 10%. With a hypothetical misalignment of the divertor coils by 3 cm substantial asymmetries in the power deposition profile are found, however, even those vanish when going to detached plasma conditions. In order to fully detach the plasma at the OT in the SF configuration impurities, here in the form of nitrogen, need to be puffed directly into the region of the secondary X-point in the simulation.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2021.100950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV D. Silvagni; O. Grover; A. Stagni; J.W. Hughes; M.A. Miller; B. Lomanowski; G. Ciraolo; M. Dunne; T. Eich; L. Frassinetti; C. Giroud; I. Jepu; A. Kallenbach; A. Kirjasuo; A. Kuang; T. Luda; C. Perez von Thun; T. Pütterich; H.J. Sun; H. Zohm;The separatrix electron density is an important parameter for core-edge scenario integration in tokamak devices, as it influences plasma confinement, divertor detachment and disruption avoidance. This quantity has been measured in H-mode discharges on JET, ASDEX Upgrade and Alcator C-Mod by applying the same fitting function to Thomson scattering measurements, and by employing the same analysis technique based on scrape-off layer power balance. To estimate the power crossing the separatrix, the inter-ELM time derivative of the plasma energy dW/dt has been experimentally evaluated and found to be approximately a constant fraction of the absorbed heating power. Correlations between ne,sep and engineering parameters have been investigated, revealing that ne,sep scales with the divertor neutral pressure p0,div in a similar manner across all devices. Additionally, when ne,sep is normalized to the obtained p0,div dependency, no clear correlation with the plasma current is found. These observations are in agreement with the 2-point model, which suggests that the upstream separatrix density is mainly set by the recycling at the divertor target.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV D. Silvagni; O. Grover; A. Stagni; J.W. Hughes; M.A. Miller; B. Lomanowski; G. Ciraolo; M. Dunne; T. Eich; L. Frassinetti; C. Giroud; I. Jepu; A. Kallenbach; A. Kirjasuo; A. Kuang; T. Luda; C. Perez von Thun; T. Pütterich; H.J. Sun; H. Zohm;The separatrix electron density is an important parameter for core-edge scenario integration in tokamak devices, as it influences plasma confinement, divertor detachment and disruption avoidance. This quantity has been measured in H-mode discharges on JET, ASDEX Upgrade and Alcator C-Mod by applying the same fitting function to Thomson scattering measurements, and by employing the same analysis technique based on scrape-off layer power balance. To estimate the power crossing the separatrix, the inter-ELM time derivative of the plasma energy dW/dt has been experimentally evaluated and found to be approximately a constant fraction of the absorbed heating power. Correlations between ne,sep and engineering parameters have been investigated, revealing that ne,sep scales with the divertor neutral pressure p0,div in a similar manner across all devices. Additionally, when ne,sep is normalized to the obtained p0,div dependency, no clear correlation with the plasma current is found. These observations are in agreement with the 2-point model, which suggests that the upstream separatrix density is mainly set by the recycling at the divertor target.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2025License: CC BYData sources: VTT Research Information Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2025.101867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Funded by:AKA | RADIATIVE SOLUTIONS TO PO..., EC | EUROfusionAKA| RADIATIVE SOLUTIONS TO POWER EXHAUST IN TOKAMAKS: Coupling of a burning plasma to a metallic wall in magnetically confined fusion reactors ,EC| EUROfusionParadela Pérez, I.; Groth, M.; Wischmeier, M.; Scarabosio, A.; Brida, D.; David, P.; Silvagni, D.; Coster, D.; Lunt, T.; Faitsch; M.;Pairs of ASDEX Upgrade L-mode discharges with the toroidal magnetic field, BT, in the forward and reverse directions have been used to study the impact of neoclassical drifts on the divertor plasma conditions and detachment. The evolution of the peak heat flux and the total power loads onto both the outer and the inner targets depends significantly on the toroidal field direction: increasing the core plasma density affects mainly the heat loads in the BT 0 (favourable). Ion saturation current measurements show similar trends to those of the IR heat flux data. These discrepancies are not only caused by drifts but also by different levels of radiated power in the core, thus the power across the separatrix, Psep. Tomographic reconstructions show that Psep is not constant within the entire dataset. Finally, at Ip=0.8MA, a significant reduction of the peak heat flux is observed at both targets for both field directions. On the other hand, at Ip=0.6MA, a reduction of the peak heat flux is only observed for BT < 0 at the outer target. Additionally, the onset of particle detachment is only observed at the outer target for BT < 0 with Ip=0.8MA. Keywords: ASDEX Upgrade, Upper single null, Scrape-off layer, Divertor detachment, Drifts
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Funded by:AKA | RADIATIVE SOLUTIONS TO PO..., EC | EUROfusionAKA| RADIATIVE SOLUTIONS TO POWER EXHAUST IN TOKAMAKS: Coupling of a burning plasma to a metallic wall in magnetically confined fusion reactors ,EC| EUROfusionParadela Pérez, I.; Groth, M.; Wischmeier, M.; Scarabosio, A.; Brida, D.; David, P.; Silvagni, D.; Coster, D.; Lunt, T.; Faitsch; M.;Pairs of ASDEX Upgrade L-mode discharges with the toroidal magnetic field, BT, in the forward and reverse directions have been used to study the impact of neoclassical drifts on the divertor plasma conditions and detachment. The evolution of the peak heat flux and the total power loads onto both the outer and the inner targets depends significantly on the toroidal field direction: increasing the core plasma density affects mainly the heat loads in the BT 0 (favourable). Ion saturation current measurements show similar trends to those of the IR heat flux data. These discrepancies are not only caused by drifts but also by different levels of radiated power in the core, thus the power across the separatrix, Psep. Tomographic reconstructions show that Psep is not constant within the entire dataset. Finally, at Ip=0.8MA, a significant reduction of the peak heat flux is observed at both targets for both field directions. On the other hand, at Ip=0.6MA, a reduction of the peak heat flux is only observed for BT < 0 at the outer target. Additionally, the onset of particle detachment is only observed at the outer target for BT < 0 with Ip=0.8MA. Keywords: ASDEX Upgrade, Upper single null, Scrape-off layer, Divertor detachment, Drifts
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication ArchiveNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2019.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Switzerland, SpainPublisher:Elsevier BV Funded by:EC | 3D-FIREFLUC, EC | EUROfusionEC| 3D-FIREFLUC ,EC| EUROfusionViezzer, E.; Austin, M.E.; Bernert, M.; Burrell, K.H.; Cano-Megias, P.; Chen, X.; Cruz-Zabala, D.J.; Coda, S.; Faitsch, M.; Février, O.; Gil, L.; Giroud, C.; Happel, T.; Harrer, G.F.; Hubbard, A.E.; Hughes, J.W.; Kallenbach, A.; Labit, B.; Merle, A.; Meyer, H.; Paz-Soldan, C.; Oyola, P.; Sauter, O.; Siccinio, M.; Silvagni, D.; Solano, E.R.;One of our grand challenges towards fusion energy is the achievement of a high-performance plasma core coupled to a boundary solution. The high confinement mode (H-mode) provides such a high-performance fusion core due to the build-up of an edge transport barrier leading to a pedestal. However, it usually features type-I edge localized modes (ELMs) which pose a threat for long-duration plasma operation in future fusion devices as they induce large energy fluences onto the plasma facing components and typically are projected to damage the first wall. For future fusion devices, the integration of a stationary no-ELM regime with a power exhaust solution is indispensable. Several no-ELM and small-ELM regimes have extended their operational space in the past years, with the ultimate goal of providing an alternative core–edge solution to ITER and EU-DEMO. Prominent no-ELM or small-ELM alternatives include the I-mode, QH-mode, EDA H-mode, quasi-continuous exhaust (QCE) and ‘grassy’ ELM regimes, X-point radiator scenarios and negative triangularity L-mode. The state-of-the-art, including access conditions and main signatures, of these alternative regimes is reviewed. Many of these regimes partly match the operational space of ITER and EU-DEMO, however, knowledge gaps remain. Besides compatibility with divertor detachment and a radiative mantle, these include extrapolations to high Q operations, low core collisionality, high Greenwald fractions, impurity transport, amongst others. The knowledge gaps and possible strategies to close these gaps to show their applicability to ITER and EU-DEMO are discussed. European Union 101052200 European Research Council 805162 Department of Energy DE-SC0014264
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Switzerland, SpainPublisher:Elsevier BV Funded by:EC | 3D-FIREFLUC, EC | EUROfusionEC| 3D-FIREFLUC ,EC| EUROfusionViezzer, E.; Austin, M.E.; Bernert, M.; Burrell, K.H.; Cano-Megias, P.; Chen, X.; Cruz-Zabala, D.J.; Coda, S.; Faitsch, M.; Février, O.; Gil, L.; Giroud, C.; Happel, T.; Harrer, G.F.; Hubbard, A.E.; Hughes, J.W.; Kallenbach, A.; Labit, B.; Merle, A.; Meyer, H.; Paz-Soldan, C.; Oyola, P.; Sauter, O.; Siccinio, M.; Silvagni, D.; Solano, E.R.;One of our grand challenges towards fusion energy is the achievement of a high-performance plasma core coupled to a boundary solution. The high confinement mode (H-mode) provides such a high-performance fusion core due to the build-up of an edge transport barrier leading to a pedestal. However, it usually features type-I edge localized modes (ELMs) which pose a threat for long-duration plasma operation in future fusion devices as they induce large energy fluences onto the plasma facing components and typically are projected to damage the first wall. For future fusion devices, the integration of a stationary no-ELM regime with a power exhaust solution is indispensable. Several no-ELM and small-ELM regimes have extended their operational space in the past years, with the ultimate goal of providing an alternative core–edge solution to ITER and EU-DEMO. Prominent no-ELM or small-ELM alternatives include the I-mode, QH-mode, EDA H-mode, quasi-continuous exhaust (QCE) and ‘grassy’ ELM regimes, X-point radiator scenarios and negative triangularity L-mode. The state-of-the-art, including access conditions and main signatures, of these alternative regimes is reviewed. Many of these regimes partly match the operational space of ITER and EU-DEMO, however, knowledge gaps remain. Besides compatibility with divertor detachment and a radiative mantle, these include extrapolations to high Q operations, low core collisionality, high Greenwald fractions, impurity transport, amongst others. The knowledge gaps and possible strategies to close these gaps to show their applicability to ITER and EU-DEMO are discussed. European Union 101052200 European Research Council 805162 Department of Energy DE-SC0014264
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BYData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionBrida, D.; Conway, G.D.; Adamek, J.; Silvagni, D.; David, P.; Eich, T.; Grenfell, G.; Komm, M.; Plank, U.;The electric field in the Scrape-Off Layer (SOL) of fusion plasmas is a key quantity affecting the local plasma transport and possibly also the overall plasma confinement. However, the physics determining the SOL electric field is experimentally not well investigated. In this study a systematic experimental analysis of the electric field in AUG L-mode discharges at various plasma currents, densities and heating powers is presented. In particular, the relation of the electric field to the divertor condition, as measured by Langmuir probes, is analyzed in detail by applying a simplified form of Ohm’s law. The analysis shows that the peak value of the radial electric field Er in the near SOL measured by Doppler reflectometry decreases from about 8kV/m at the lowest densities to -2kV/m at the highest densities, which is accompanied by a flattening of the outer divertor target electron temperature profiles. The electric field obtained by integrating Ohm’s law from the divertor target to the midplane agrees with Er in the near SOL within the uncertainties, evidencing the quantitative validity of the underlying model. Based on the findings about the relation between the electric field and the target conditions, a scaling to obtain the maximum of Er in the SOL in terms of upstream parameters is developed.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionBrida, D.; Conway, G.D.; Adamek, J.; Silvagni, D.; David, P.; Eich, T.; Grenfell, G.; Komm, M.; Plank, U.;The electric field in the Scrape-Off Layer (SOL) of fusion plasmas is a key quantity affecting the local plasma transport and possibly also the overall plasma confinement. However, the physics determining the SOL electric field is experimentally not well investigated. In this study a systematic experimental analysis of the electric field in AUG L-mode discharges at various plasma currents, densities and heating powers is presented. In particular, the relation of the electric field to the divertor condition, as measured by Langmuir probes, is analyzed in detail by applying a simplified form of Ohm’s law. The analysis shows that the peak value of the radial electric field Er in the near SOL measured by Doppler reflectometry decreases from about 8kV/m at the lowest densities to -2kV/m at the highest densities, which is accompanied by a flattening of the outer divertor target electron temperature profiles. The electric field obtained by integrating Ohm’s law from the divertor target to the midplane agrees with Er in the near SOL within the uncertainties, evidencing the quantitative validity of the underlying model. Based on the findings about the relation between the electric field and the target conditions, a scaling to obtain the maximum of Er in the SOL in terms of upstream parameters is developed.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2022.101262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Switzerland, France, SpainPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionD. Prisiazhniuk; D. Prisiazhniuk; D. Prisiazhniuk; L. Gil; L. Gil; J. R. Pinzon; J. R. Pinzon; J. R. Pinzon; D. Brida; D. Brida; Ulrich Stroth; Ulrich Stroth; Ulrich Stroth; M. Griener; M. Griener; M. Griener; Pascale Hennequin; Pascale Hennequin; P. Manz; P. Manz; P. Manz; M. Bernert; M. Bernert; D. Silvagni; D. Silvagni; D. Silvagni; Simon Freethy; Simon Freethy; Simon Freethy; F. Ryter; F. Ryter; F. Janky; F. Janky; Antoine Merle; Antoine Merle; T. Happel; T. Happel; B. Sieglin; B. Sieglin; L. Guimarais; L. Guimarais; M. Faitsch; M. Faitsch; D. Nille; D. Nille; T. Eich; T. Eich;Recent I-mode investigations from the ASDEX Upgrade tokamak are reported. It is shown that neutral-beam-injection heated I-modes can be stationary, which is important in terms of extrapolability towards future fusion devices. Furthermore, detailed studies on the weakly coherent mode are reported. In particular, experimental observations point towards its existence in L-mode, before I-mode starts. Moreover, its impact on density and temperature fluctuations is evaluated. Studies of stationary divertor heat fluxes show that in I-mode, the upstream power fall-off length is between those observed in L-mode and H-mode, and it is connected to the scrape-off layer temperature fall-off length. Moreover, analysis of transient divertor heat loads shows that intermittent turbulent events, observed in the confinement region and linked to the weakly coherent mode, are responsible for a significant part of divertor heat loads. EUROfusion Consortium grant agreement No 633053 EUROfusion Enabling Research work-package AWP15-ENR-09/IPP-02
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Switzerland, France, SpainPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionD. Prisiazhniuk; D. Prisiazhniuk; D. Prisiazhniuk; L. Gil; L. Gil; J. R. Pinzon; J. R. Pinzon; J. R. Pinzon; D. Brida; D. Brida; Ulrich Stroth; Ulrich Stroth; Ulrich Stroth; M. Griener; M. Griener; M. Griener; Pascale Hennequin; Pascale Hennequin; P. Manz; P. Manz; P. Manz; M. Bernert; M. Bernert; D. Silvagni; D. Silvagni; D. Silvagni; Simon Freethy; Simon Freethy; Simon Freethy; F. Ryter; F. Ryter; F. Janky; F. Janky; Antoine Merle; Antoine Merle; T. Happel; T. Happel; B. Sieglin; B. Sieglin; L. Guimarais; L. Guimarais; M. Faitsch; M. Faitsch; D. Nille; D. Nille; T. Eich; T. Eich;Recent I-mode investigations from the ASDEX Upgrade tokamak are reported. It is shown that neutral-beam-injection heated I-modes can be stationary, which is important in terms of extrapolability towards future fusion devices. Furthermore, detailed studies on the weakly coherent mode are reported. In particular, experimental observations point towards its existence in L-mode, before I-mode starts. Moreover, its impact on density and temperature fluctuations is evaluated. Studies of stationary divertor heat fluxes show that in I-mode, the upstream power fall-off length is between those observed in L-mode and H-mode, and it is connected to the scrape-off layer temperature fall-off length. Moreover, analysis of transient divertor heat loads shows that intermittent turbulent events, observed in the confinement region and linked to the weakly coherent mode, are responsible for a significant part of divertor heat loads. EUROfusion Consortium grant agreement No 633053 EUROfusion Enabling Research work-package AWP15-ENR-09/IPP-02
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2019License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaNuclear Materials and EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalArchive de l'Observatoire de Paris (HAL)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2018.12.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu