- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Publicly fundedDavid M. Wall; James D. Browne; Ian Kilgallon; Jerry D. Murphy; Richard O'Shea;Abstract The total theoretical biomethane resource of cattle slurry and grass silage in Ireland was estimated using the most up to date spatially explicit data available. The cattle slurry resource (9.6 PJ) was predominantly found in southern and north-eastern regions while the grass silage resource (128.4 PJ) was more concentrated in western regions. The total biomethane resource of cattle slurry and grass silage was equivalent to 6% and 76% of total natural gas consumption in Ireland in 2014/15, respectively. A sequential optimisation model was run to determine where to source cattle slurry and grass silage from, for 42 potential biomethane plant locations in Ireland. The concept was to maximise plant net present value (NPV) and develop locations in order of plant profitability. The impact of plant size, grass silage price, volatile solids ratio (VSR) of grass silage to cattle slurry, and incentive per unit energy of biomethane was assessed in 81 separate scenarios. The results indicated that total biomethane production from plants with a positive NPV ranged from 3.51 PJ/a to 12.19 PJ/a, considerably less than the total resource. The levelised cost of energy (LCOE) of plants was also calculated and ranged from ca. 50.2 €/MW h to ca. 109 €/MW h depending on the various plant parameters. LCOE decreased with increased plant size and ratio of grass silage to cattle slurry. The relationship between grass silage price and LCOE was assessed. In the median scenario (33 €/twwt grass silage, VSR of 4, 75,000 twwt/a plant size, 60 €/MW h incentive) cattle slurry was sourced within 6.4 km of the facility while grass silage was sourced within 10.5 km of the facility. A high level assessment of the carbon dioxide intensity of biomethane from the median scenario was conducted and showed a potential greenhouse gas reduction of 74–79% when compared to natural gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Publicly fundedDavid M. Wall; James D. Browne; Ian Kilgallon; Jerry D. Murphy; Richard O'Shea;Abstract The total theoretical biomethane resource of cattle slurry and grass silage in Ireland was estimated using the most up to date spatially explicit data available. The cattle slurry resource (9.6 PJ) was predominantly found in southern and north-eastern regions while the grass silage resource (128.4 PJ) was more concentrated in western regions. The total biomethane resource of cattle slurry and grass silage was equivalent to 6% and 76% of total natural gas consumption in Ireland in 2014/15, respectively. A sequential optimisation model was run to determine where to source cattle slurry and grass silage from, for 42 potential biomethane plant locations in Ireland. The concept was to maximise plant net present value (NPV) and develop locations in order of plant profitability. The impact of plant size, grass silage price, volatile solids ratio (VSR) of grass silage to cattle slurry, and incentive per unit energy of biomethane was assessed in 81 separate scenarios. The results indicated that total biomethane production from plants with a positive NPV ranged from 3.51 PJ/a to 12.19 PJ/a, considerably less than the total resource. The levelised cost of energy (LCOE) of plants was also calculated and ranged from ca. 50.2 €/MW h to ca. 109 €/MW h depending on the various plant parameters. LCOE decreased with increased plant size and ratio of grass silage to cattle slurry. The relationship between grass silage price and LCOE was assessed. In the median scenario (33 €/twwt grass silage, VSR of 4, 75,000 twwt/a plant size, 60 €/MW h incentive) cattle slurry was sourced within 6.4 km of the facility while grass silage was sourced within 10.5 km of the facility. A high level assessment of the carbon dioxide intensity of biomethane from the median scenario was conducted and showed a potential greenhouse gas reduction of 74–79% when compared to natural gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Publicly fundedFunded by:EC | ATBESTEC| ATBESTAuthors: Jerry D. Murphy; M.A. Voelklein; Davis Rusmanis;Abstract This study investigated in-situ and ex-situ biological methanation strategies for biogas upgrading potential. The addition and circulation of hydrogen with a ceramic gas diffuser unit revealed positive effects on the methanogenic process. A short-term maximum methane productivity of 2.5 L CH4 per L reactor volume per day (LVR−1 d−1) was obtained in-situ. Adverse effects of elevated dissolved hydrogen concentrations on acetogenesis became evident. Ex-situ methanation in a reactor subjected to gas recirculation for recurrent 24 h periods achieved methane formation rates of 3.7 L CH4 LVR−1 d−1. A biomethane with methane concentrations in excess of 96% successfully demonstrated the potential for gas grid injection. A theoretic model supplying gases continuously into a sequential ex-situ reactor system and steadily displacing the upgraded biogas confirmed similar methane formation performance and was advanced to a full-scale concept. Gas conversion efficiency of 95% producing biomethane at 85% methane content was attained. A hybrid model, where an in-situ grass digester is followed by an ex-situ reactor, is proposed as a novel upgrading strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Publicly fundedFunded by:EC | ATBESTEC| ATBESTAuthors: Jerry D. Murphy; M.A. Voelklein; Davis Rusmanis;Abstract This study investigated in-situ and ex-situ biological methanation strategies for biogas upgrading potential. The addition and circulation of hydrogen with a ceramic gas diffuser unit revealed positive effects on the methanogenic process. A short-term maximum methane productivity of 2.5 L CH4 per L reactor volume per day (LVR−1 d−1) was obtained in-situ. Adverse effects of elevated dissolved hydrogen concentrations on acetogenesis became evident. Ex-situ methanation in a reactor subjected to gas recirculation for recurrent 24 h periods achieved methane formation rates of 3.7 L CH4 LVR−1 d−1. A biomethane with methane concentrations in excess of 96% successfully demonstrated the potential for gas grid injection. A theoretic model supplying gases continuously into a sequential ex-situ reactor system and steadily displacing the upgraded biogas confirmed similar methane formation performance and was advanced to a full-scale concept. Gas conversion efficiency of 95% producing biomethane at 85% methane content was attained. A hybrid model, where an in-situ grass digester is followed by an ex-situ reactor, is proposed as a novel upgrading strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedAuthors: Jun Cheng; Richen Lin; Richen Lin; Jerry D. Murphy;Abstract Algae have emerged as a sustainable feedstock for gaseous biofuel production (such as hydrogen and methane). Fermentative sugars and amino acids can be obtained after suitable pretreatment and hydrolysis of algae. However, binary interactions between the carbonyl group ( C O) in sugars and the amino group ( NH2) in amino acids possibly occur during thermal pretreatment, resulting in deficient hydrolysis and fermentation performance. In this study, algae-derived glucose and glycine as model substrates were subjected to thermochemical treatment (135 °C for 15 min) under neutral, acid and alkaline conditions to assess their decomposition routes and the associated implications on sequential biohydrogen and biomethane fermentation. Acid treatment mainly resulted in direct decomposition of glucose into 5-methylfurfural (C6H6O2, 34.4% of peak area). While thermal treatment with deionized water and alkaline led to the formation of nitrogen-containing Maillard compounds, namely 1-azido-4-dimethylaminobenzene (C8H10N4, 33.1%) and 2,3,5-trimethylpyrazine (C7H10N2, 49.0%), respectively. Untreated glucose/glycine yielded a biohydrogen production of 171.9 mL/g, while alkaline treatment exhibited a biohydrogen yield of only 5.9 mL/g due to the great loss of fermentable substrate. The total energy conversion efficiency (ECE) of 71.1% was achieved through the second-stage biomethane fermentation of untreated glucose/glycine. Comparatively, alkaline treatment significantly inhibited the total energy recovery with an ECE of 31.9%. The findings of this study suggested that optimised pretreatment strategy for algae needs to be developed to avoid fermentable compounds loss and achieve a higher ECE.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedAuthors: Jun Cheng; Richen Lin; Richen Lin; Jerry D. Murphy;Abstract Algae have emerged as a sustainable feedstock for gaseous biofuel production (such as hydrogen and methane). Fermentative sugars and amino acids can be obtained after suitable pretreatment and hydrolysis of algae. However, binary interactions between the carbonyl group ( C O) in sugars and the amino group ( NH2) in amino acids possibly occur during thermal pretreatment, resulting in deficient hydrolysis and fermentation performance. In this study, algae-derived glucose and glycine as model substrates were subjected to thermochemical treatment (135 °C for 15 min) under neutral, acid and alkaline conditions to assess their decomposition routes and the associated implications on sequential biohydrogen and biomethane fermentation. Acid treatment mainly resulted in direct decomposition of glucose into 5-methylfurfural (C6H6O2, 34.4% of peak area). While thermal treatment with deionized water and alkaline led to the formation of nitrogen-containing Maillard compounds, namely 1-azido-4-dimethylaminobenzene (C8H10N4, 33.1%) and 2,3,5-trimethylpyrazine (C7H10N2, 49.0%), respectively. Untreated glucose/glycine yielded a biohydrogen production of 171.9 mL/g, while alkaline treatment exhibited a biohydrogen yield of only 5.9 mL/g due to the great loss of fermentable substrate. The total energy conversion efficiency (ECE) of 71.1% was achieved through the second-stage biomethane fermentation of untreated glucose/glycine. Comparatively, alkaline treatment significantly inhibited the total energy recovery with an ECE of 31.9%. The findings of this study suggested that optimised pretreatment strategy for algae needs to be developed to avoid fermentable compounds loss and achieve a higher ECE.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:Elsevier BV Publicly fundedAuthors: Smyth, B.M.; Murphy, J.D.; O'Brien, C.M.;Biofuels have had bad press in recent years. There are primarily two distinct issues. The biofuel crops with the best yields (such as sugarcane or oil palm) grow in tropical countries where habitat destruction has occurred in association with the biofuel system. First generation indigenous energy crops commonly used for transport fuel in Europe (such as rapeseed and wheat) have low yields and/or the energy balance of the associated biofuel system is poor. This paper shows that grass is a crop with significant yields and grass biomethane (a gaseous renewable transport biofuel) has a very good energy balance and does not involve habitat destruction, land use change, new farming practices or annual tilling. The gross and net energy production per hectare are almost identical to palm oil biodiesel; the net energy of the grass system is at least 50% better than the next best indigenous European biofuel system investigated. Ten percent of Irish grasslands could fuel over 55% of the Irish private car fleet.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu168 citations 168 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:Elsevier BV Publicly fundedAuthors: Smyth, B.M.; Murphy, J.D.; O'Brien, C.M.;Biofuels have had bad press in recent years. There are primarily two distinct issues. The biofuel crops with the best yields (such as sugarcane or oil palm) grow in tropical countries where habitat destruction has occurred in association with the biofuel system. First generation indigenous energy crops commonly used for transport fuel in Europe (such as rapeseed and wheat) have low yields and/or the energy balance of the associated biofuel system is poor. This paper shows that grass is a crop with significant yields and grass biomethane (a gaseous renewable transport biofuel) has a very good energy balance and does not involve habitat destruction, land use change, new farming practices or annual tilling. The gross and net energy production per hectare are almost identical to palm oil biodiesel; the net energy of the grass system is at least 50% better than the next best indigenous European biofuel system investigated. Ten percent of Irish grasslands could fuel over 55% of the Irish private car fleet.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu168 citations 168 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Publicly fundedAuthors: Ian Kilgallon; Richard O'Shea; David M. Wall; Jerry D. Murphy;Abstract Six EU gas grids have a target of 100% substitution of natural gas with renewable gas by 2050. This industry will start with biogas upgraded to biomethane. The biomethane resource and location of waste substrates (such as agricultural slurries, slaughterhouse waste, milk processing waste, and source separated household organic waste) were determined using the most recent spatially explicit data for Ireland. The total biomethane resource was estimated equivalent to: 7.6% of natural gas usage, 7% of energy in transport; 52% of the fuel usage in heavy goods vehicles in 2013. In terms of natural gas usage it corresponded to 26.5% of industrial gas use, and 52% of residential natural gas use. The resource as a source of thermal energy is equivalent to wood chips from 16.5% of arable land under short rotation coppice willow. Thematic maps illustrating the location of each resource were developed to highlight regions of significant biomethane production potential. The regions with the greatest resource of cattle slurry are located in the south and east of the country; sheep manure resources are concentrated on the western seaboard, while the largest biomethane resource from household organic waste is found in urban and city areas (63% of household organic waste biomethane resource).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Publicly fundedAuthors: Ian Kilgallon; Richard O'Shea; David M. Wall; Jerry D. Murphy;Abstract Six EU gas grids have a target of 100% substitution of natural gas with renewable gas by 2050. This industry will start with biogas upgraded to biomethane. The biomethane resource and location of waste substrates (such as agricultural slurries, slaughterhouse waste, milk processing waste, and source separated household organic waste) were determined using the most recent spatially explicit data for Ireland. The total biomethane resource was estimated equivalent to: 7.6% of natural gas usage, 7% of energy in transport; 52% of the fuel usage in heavy goods vehicles in 2013. In terms of natural gas usage it corresponded to 26.5% of industrial gas use, and 52% of residential natural gas use. The resource as a source of thermal energy is equivalent to wood chips from 16.5% of arable land under short rotation coppice willow. Thematic maps illustrating the location of each resource were developed to highlight regions of significant biomethane production potential. The regions with the greatest resource of cattle slurry are located in the south and east of the country; sheep manure resources are concentrated on the western seaboard, while the largest biomethane resource from household organic waste is found in urban and city areas (63% of household organic waste biomethane resource).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedFunded by:EPAEPABenteng Wu; Richen Lin; Richard O'Shea; Chen Deng; Karthik Rajendran; Jerry D. Murphy;handle: 10468/13394
Abstract In the transition to a climate neutral future, the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies, together with power to gas (P2G) systems can generate green renewable gas, which is essential to reduce the GHG footprint of industry. However, each technology faces challenges with respect to sustainability and conversion efficiency. Here this study identifies an optimal pathway, leading to a sustainable bioenergy system where the carbon released in the fuel is offset by the GHG savings of the circular bio-based system. It provides a state-of-the-art review of individual technologies and proposes a bespoke circular cascading bio-based system with anaerobic digestion as the key platform, integrating electro-fuels via P2G systems and value-added pyrochar via pyrolysis of solid digestate. The mass and energy analysis suggests that a reduction of 11% in digestate mass flow with the production of pyrochar, bio-oil and syngas and an increase of 70% in biomethane production with the utilization of curtailed or constrained electricity can be achieved in the proposed bio-based system, enabling a 70% increase in net energy output as compared with a conventional biomethane system. However, the carbon footprint of the electricity from which the hydrogen is sourced is shown to be a critical parameter in assessing the GHG balance of the bespoke system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedFunded by:EPAEPABenteng Wu; Richen Lin; Richard O'Shea; Chen Deng; Karthik Rajendran; Jerry D. Murphy;handle: 10468/13394
Abstract In the transition to a climate neutral future, the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies, together with power to gas (P2G) systems can generate green renewable gas, which is essential to reduce the GHG footprint of industry. However, each technology faces challenges with respect to sustainability and conversion efficiency. Here this study identifies an optimal pathway, leading to a sustainable bioenergy system where the carbon released in the fuel is offset by the GHG savings of the circular bio-based system. It provides a state-of-the-art review of individual technologies and proposes a bespoke circular cascading bio-based system with anaerobic digestion as the key platform, integrating electro-fuels via P2G systems and value-added pyrochar via pyrolysis of solid digestate. The mass and energy analysis suggests that a reduction of 11% in digestate mass flow with the production of pyrochar, bio-oil and syngas and an increase of 70% in biomethane production with the utilization of curtailed or constrained electricity can be achieved in the proposed bio-based system, enabling a 70% increase in net energy output as compared with a conventional biomethane system. However, the carbon footprint of the electricity from which the hydrogen is sourced is shown to be a critical parameter in assessing the GHG balance of the bespoke system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Publicly fundedFunded by:Sustainable Energy Authority of Ireland, EPASustainable Energy Authority of Ireland ,EPAChen Deng; Richen Lin; Xihui Kang; Benteng Wu; Xue Ning; David Wall; Jerry D. Murphy;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Publicly fundedFunded by:Sustainable Energy Authority of Ireland, EPASustainable Energy Authority of Ireland ,EPAChen Deng; Richen Lin; Xihui Kang; Benteng Wu; Xue Ning; David Wall; Jerry D. Murphy;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: O'Shea, Richard; Wall, David M.; McDonagh, Shane; Murphy, Jerry D.;handle: 10468/4638
Abstract The suitability of existing sources of CO2 in a region (Ireland) for use in power to gas systems was determined using multi criteria decision analysis. The main sources of CO2 were from the combustion of fossil fuels, cement production, alcohol production, and wastewater treatment plants. The criteria used to assess the suitability of CO2 sources were: annual quantity of CO2 emitted; concentration of CO2 in the gas; CO2 source; distance to the electricity network; and distance to the gas network. The most suitable sources of CO2 were found to be distilleries, and wastewater treatment plants with anaerobic digesters. The most suitable source of CO2, a large distillery, could be used to convert 461 GWh/a of electricity into 258 GWh/a of methane. The total electricity requirement of this system is larger than the 348 GWh of renewable electricity dispatched down in Ireland in 2015. This could allow for the conversion of electricity that would be curtailed into a valuable energy vector. The resulting methane could fuel 729 compressed natural gas fuelled buses per annum. Synergies in integrating power to gas at a wastewater treatment plant include use of oxygen in the wastewater treatment process.
Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: O'Shea, Richard; Wall, David M.; McDonagh, Shane; Murphy, Jerry D.;handle: 10468/4638
Abstract The suitability of existing sources of CO2 in a region (Ireland) for use in power to gas systems was determined using multi criteria decision analysis. The main sources of CO2 were from the combustion of fossil fuels, cement production, alcohol production, and wastewater treatment plants. The criteria used to assess the suitability of CO2 sources were: annual quantity of CO2 emitted; concentration of CO2 in the gas; CO2 source; distance to the electricity network; and distance to the gas network. The most suitable sources of CO2 were found to be distilleries, and wastewater treatment plants with anaerobic digesters. The most suitable source of CO2, a large distillery, could be used to convert 461 GWh/a of electricity into 258 GWh/a of methane. The total electricity requirement of this system is larger than the 348 GWh of renewable electricity dispatched down in Ireland in 2015. This could allow for the conversion of electricity that would be curtailed into a valuable energy vector. The resulting methane could fuel 729 compressed natural gas fuelled buses per annum. Synergies in integrating power to gas at a wastewater treatment plant include use of oxygen in the wastewater treatment process.
Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedBenteng Wu; Richen Lin; Xihui Kang; Chen Deng; Alan D.W. Dobson; Jerry D. Murphy;handle: 10468/13400
Abstract Ex-situ biomethanation (CO2 + 4H2 → CH4 + 2H2O) can simultaneously achieve renewable electricity storage and CO2 valorisation. However, fluctuations in variable renewable electricity may lead to intermittent hydrogen supply, which is shown to adversely affect microbial activity and performance of the biomethanation process. Carbonaceous materials may act as an abiotic additive to enhance microbial robustness and improve system performance. Nanomaterial graphene and pyrochar were compared to assess their effects on biomethanation systems with an intermittent supply of hydrogen. Results revealed that intermittent gas supply caused deterioration in the restart performance with only 66% of theoretical methane production obtained in the control compared with 84% under steady state conditions. The addition of graphene in biomethanation led to 78% of the theoretical methane production after repetitive intermittent supply; this improvement is postulated to be due to its high electrical conductivity and large specific surface (500 m2/g). In comparison, pyrochar amendment did not lead to a significant improvement in upgrading performance. Microbial analysis showed that the OTUs affiliated to bacteria withinin the order SHA-98 (42.9% in abundance) and archaea from the genus Methanothermobacter (99%) may result in the establishment of a new syntrophic relationship to improve the robustness of biomethanation process.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedBenteng Wu; Richen Lin; Xihui Kang; Chen Deng; Alan D.W. Dobson; Jerry D. Murphy;handle: 10468/13400
Abstract Ex-situ biomethanation (CO2 + 4H2 → CH4 + 2H2O) can simultaneously achieve renewable electricity storage and CO2 valorisation. However, fluctuations in variable renewable electricity may lead to intermittent hydrogen supply, which is shown to adversely affect microbial activity and performance of the biomethanation process. Carbonaceous materials may act as an abiotic additive to enhance microbial robustness and improve system performance. Nanomaterial graphene and pyrochar were compared to assess their effects on biomethanation systems with an intermittent supply of hydrogen. Results revealed that intermittent gas supply caused deterioration in the restart performance with only 66% of theoretical methane production obtained in the control compared with 84% under steady state conditions. The addition of graphene in biomethanation led to 78% of the theoretical methane production after repetitive intermittent supply; this improvement is postulated to be due to its high electrical conductivity and large specific surface (500 m2/g). In comparison, pyrochar amendment did not lead to a significant improvement in upgrading performance. Microbial analysis showed that the OTUs affiliated to bacteria withinin the order SHA-98 (42.9% in abundance) and archaea from the genus Methanothermobacter (99%) may result in the establishment of a new syntrophic relationship to improve the robustness of biomethanation process.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Chemical Society (ACS) Publicly fundedAuthors: Nicholas E. Korres; Abdul-Sattar Nizami; Jerry D. Murphy;doi: 10.1021/es901533j
pmid: 20028043
Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu227 citations 227 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Chemical Society (ACS) Publicly fundedAuthors: Nicholas E. Korres; Abdul-Sattar Nizami; Jerry D. Murphy;doi: 10.1021/es901533j
pmid: 20028043
Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu227 citations 227 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Publicly fundedDavid M. Wall; James D. Browne; Ian Kilgallon; Jerry D. Murphy; Richard O'Shea;Abstract The total theoretical biomethane resource of cattle slurry and grass silage in Ireland was estimated using the most up to date spatially explicit data available. The cattle slurry resource (9.6 PJ) was predominantly found in southern and north-eastern regions while the grass silage resource (128.4 PJ) was more concentrated in western regions. The total biomethane resource of cattle slurry and grass silage was equivalent to 6% and 76% of total natural gas consumption in Ireland in 2014/15, respectively. A sequential optimisation model was run to determine where to source cattle slurry and grass silage from, for 42 potential biomethane plant locations in Ireland. The concept was to maximise plant net present value (NPV) and develop locations in order of plant profitability. The impact of plant size, grass silage price, volatile solids ratio (VSR) of grass silage to cattle slurry, and incentive per unit energy of biomethane was assessed in 81 separate scenarios. The results indicated that total biomethane production from plants with a positive NPV ranged from 3.51 PJ/a to 12.19 PJ/a, considerably less than the total resource. The levelised cost of energy (LCOE) of plants was also calculated and ranged from ca. 50.2 €/MW h to ca. 109 €/MW h depending on the various plant parameters. LCOE decreased with increased plant size and ratio of grass silage to cattle slurry. The relationship between grass silage price and LCOE was assessed. In the median scenario (33 €/twwt grass silage, VSR of 4, 75,000 twwt/a plant size, 60 €/MW h incentive) cattle slurry was sourced within 6.4 km of the facility while grass silage was sourced within 10.5 km of the facility. A high level assessment of the carbon dioxide intensity of biomethane from the median scenario was conducted and showed a potential greenhouse gas reduction of 74–79% when compared to natural gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Publicly fundedDavid M. Wall; James D. Browne; Ian Kilgallon; Jerry D. Murphy; Richard O'Shea;Abstract The total theoretical biomethane resource of cattle slurry and grass silage in Ireland was estimated using the most up to date spatially explicit data available. The cattle slurry resource (9.6 PJ) was predominantly found in southern and north-eastern regions while the grass silage resource (128.4 PJ) was more concentrated in western regions. The total biomethane resource of cattle slurry and grass silage was equivalent to 6% and 76% of total natural gas consumption in Ireland in 2014/15, respectively. A sequential optimisation model was run to determine where to source cattle slurry and grass silage from, for 42 potential biomethane plant locations in Ireland. The concept was to maximise plant net present value (NPV) and develop locations in order of plant profitability. The impact of plant size, grass silage price, volatile solids ratio (VSR) of grass silage to cattle slurry, and incentive per unit energy of biomethane was assessed in 81 separate scenarios. The results indicated that total biomethane production from plants with a positive NPV ranged from 3.51 PJ/a to 12.19 PJ/a, considerably less than the total resource. The levelised cost of energy (LCOE) of plants was also calculated and ranged from ca. 50.2 €/MW h to ca. 109 €/MW h depending on the various plant parameters. LCOE decreased with increased plant size and ratio of grass silage to cattle slurry. The relationship between grass silage price and LCOE was assessed. In the median scenario (33 €/twwt grass silage, VSR of 4, 75,000 twwt/a plant size, 60 €/MW h incentive) cattle slurry was sourced within 6.4 km of the facility while grass silage was sourced within 10.5 km of the facility. A high level assessment of the carbon dioxide intensity of biomethane from the median scenario was conducted and showed a potential greenhouse gas reduction of 74–79% when compared to natural gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Publicly fundedFunded by:EC | ATBESTEC| ATBESTAuthors: Jerry D. Murphy; M.A. Voelklein; Davis Rusmanis;Abstract This study investigated in-situ and ex-situ biological methanation strategies for biogas upgrading potential. The addition and circulation of hydrogen with a ceramic gas diffuser unit revealed positive effects on the methanogenic process. A short-term maximum methane productivity of 2.5 L CH4 per L reactor volume per day (LVR−1 d−1) was obtained in-situ. Adverse effects of elevated dissolved hydrogen concentrations on acetogenesis became evident. Ex-situ methanation in a reactor subjected to gas recirculation for recurrent 24 h periods achieved methane formation rates of 3.7 L CH4 LVR−1 d−1. A biomethane with methane concentrations in excess of 96% successfully demonstrated the potential for gas grid injection. A theoretic model supplying gases continuously into a sequential ex-situ reactor system and steadily displacing the upgraded biogas confirmed similar methane formation performance and was advanced to a full-scale concept. Gas conversion efficiency of 95% producing biomethane at 85% methane content was attained. A hybrid model, where an in-situ grass digester is followed by an ex-situ reactor, is proposed as a novel upgrading strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Publicly fundedFunded by:EC | ATBESTEC| ATBESTAuthors: Jerry D. Murphy; M.A. Voelklein; Davis Rusmanis;Abstract This study investigated in-situ and ex-situ biological methanation strategies for biogas upgrading potential. The addition and circulation of hydrogen with a ceramic gas diffuser unit revealed positive effects on the methanogenic process. A short-term maximum methane productivity of 2.5 L CH4 per L reactor volume per day (LVR−1 d−1) was obtained in-situ. Adverse effects of elevated dissolved hydrogen concentrations on acetogenesis became evident. Ex-situ methanation in a reactor subjected to gas recirculation for recurrent 24 h periods achieved methane formation rates of 3.7 L CH4 LVR−1 d−1. A biomethane with methane concentrations in excess of 96% successfully demonstrated the potential for gas grid injection. A theoretic model supplying gases continuously into a sequential ex-situ reactor system and steadily displacing the upgraded biogas confirmed similar methane formation performance and was advanced to a full-scale concept. Gas conversion efficiency of 95% producing biomethane at 85% methane content was attained. A hybrid model, where an in-situ grass digester is followed by an ex-situ reactor, is proposed as a novel upgrading strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedAuthors: Jun Cheng; Richen Lin; Richen Lin; Jerry D. Murphy;Abstract Algae have emerged as a sustainable feedstock for gaseous biofuel production (such as hydrogen and methane). Fermentative sugars and amino acids can be obtained after suitable pretreatment and hydrolysis of algae. However, binary interactions between the carbonyl group ( C O) in sugars and the amino group ( NH2) in amino acids possibly occur during thermal pretreatment, resulting in deficient hydrolysis and fermentation performance. In this study, algae-derived glucose and glycine as model substrates were subjected to thermochemical treatment (135 °C for 15 min) under neutral, acid and alkaline conditions to assess their decomposition routes and the associated implications on sequential biohydrogen and biomethane fermentation. Acid treatment mainly resulted in direct decomposition of glucose into 5-methylfurfural (C6H6O2, 34.4% of peak area). While thermal treatment with deionized water and alkaline led to the formation of nitrogen-containing Maillard compounds, namely 1-azido-4-dimethylaminobenzene (C8H10N4, 33.1%) and 2,3,5-trimethylpyrazine (C7H10N2, 49.0%), respectively. Untreated glucose/glycine yielded a biohydrogen production of 171.9 mL/g, while alkaline treatment exhibited a biohydrogen yield of only 5.9 mL/g due to the great loss of fermentable substrate. The total energy conversion efficiency (ECE) of 71.1% was achieved through the second-stage biomethane fermentation of untreated glucose/glycine. Comparatively, alkaline treatment significantly inhibited the total energy recovery with an ECE of 31.9%. The findings of this study suggested that optimised pretreatment strategy for algae needs to be developed to avoid fermentable compounds loss and achieve a higher ECE.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedAuthors: Jun Cheng; Richen Lin; Richen Lin; Jerry D. Murphy;Abstract Algae have emerged as a sustainable feedstock for gaseous biofuel production (such as hydrogen and methane). Fermentative sugars and amino acids can be obtained after suitable pretreatment and hydrolysis of algae. However, binary interactions between the carbonyl group ( C O) in sugars and the amino group ( NH2) in amino acids possibly occur during thermal pretreatment, resulting in deficient hydrolysis and fermentation performance. In this study, algae-derived glucose and glycine as model substrates were subjected to thermochemical treatment (135 °C for 15 min) under neutral, acid and alkaline conditions to assess their decomposition routes and the associated implications on sequential biohydrogen and biomethane fermentation. Acid treatment mainly resulted in direct decomposition of glucose into 5-methylfurfural (C6H6O2, 34.4% of peak area). While thermal treatment with deionized water and alkaline led to the formation of nitrogen-containing Maillard compounds, namely 1-azido-4-dimethylaminobenzene (C8H10N4, 33.1%) and 2,3,5-trimethylpyrazine (C7H10N2, 49.0%), respectively. Untreated glucose/glycine yielded a biohydrogen production of 171.9 mL/g, while alkaline treatment exhibited a biohydrogen yield of only 5.9 mL/g due to the great loss of fermentable substrate. The total energy conversion efficiency (ECE) of 71.1% was achieved through the second-stage biomethane fermentation of untreated glucose/glycine. Comparatively, alkaline treatment significantly inhibited the total energy recovery with an ECE of 31.9%. The findings of this study suggested that optimised pretreatment strategy for algae needs to be developed to avoid fermentable compounds loss and achieve a higher ECE.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:Elsevier BV Publicly fundedAuthors: Smyth, B.M.; Murphy, J.D.; O'Brien, C.M.;Biofuels have had bad press in recent years. There are primarily two distinct issues. The biofuel crops with the best yields (such as sugarcane or oil palm) grow in tropical countries where habitat destruction has occurred in association with the biofuel system. First generation indigenous energy crops commonly used for transport fuel in Europe (such as rapeseed and wheat) have low yields and/or the energy balance of the associated biofuel system is poor. This paper shows that grass is a crop with significant yields and grass biomethane (a gaseous renewable transport biofuel) has a very good energy balance and does not involve habitat destruction, land use change, new farming practices or annual tilling. The gross and net energy production per hectare are almost identical to palm oil biodiesel; the net energy of the grass system is at least 50% better than the next best indigenous European biofuel system investigated. Ten percent of Irish grasslands could fuel over 55% of the Irish private car fleet.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu168 citations 168 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 United KingdomPublisher:Elsevier BV Publicly fundedAuthors: Smyth, B.M.; Murphy, J.D.; O'Brien, C.M.;Biofuels have had bad press in recent years. There are primarily two distinct issues. The biofuel crops with the best yields (such as sugarcane or oil palm) grow in tropical countries where habitat destruction has occurred in association with the biofuel system. First generation indigenous energy crops commonly used for transport fuel in Europe (such as rapeseed and wheat) have low yields and/or the energy balance of the associated biofuel system is poor. This paper shows that grass is a crop with significant yields and grass biomethane (a gaseous renewable transport biofuel) has a very good energy balance and does not involve habitat destruction, land use change, new farming practices or annual tilling. The gross and net energy production per hectare are almost identical to palm oil biodiesel; the net energy of the grass system is at least 50% better than the next best indigenous European biofuel system investigated. Ten percent of Irish grasslands could fuel over 55% of the Irish private car fleet.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu168 citations 168 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueen's University Belfast Research PortalArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2009.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Publicly fundedAuthors: Ian Kilgallon; Richard O'Shea; David M. Wall; Jerry D. Murphy;Abstract Six EU gas grids have a target of 100% substitution of natural gas with renewable gas by 2050. This industry will start with biogas upgraded to biomethane. The biomethane resource and location of waste substrates (such as agricultural slurries, slaughterhouse waste, milk processing waste, and source separated household organic waste) were determined using the most recent spatially explicit data for Ireland. The total biomethane resource was estimated equivalent to: 7.6% of natural gas usage, 7% of energy in transport; 52% of the fuel usage in heavy goods vehicles in 2013. In terms of natural gas usage it corresponded to 26.5% of industrial gas use, and 52% of residential natural gas use. The resource as a source of thermal energy is equivalent to wood chips from 16.5% of arable land under short rotation coppice willow. Thematic maps illustrating the location of each resource were developed to highlight regions of significant biomethane production potential. The regions with the greatest resource of cattle slurry are located in the south and east of the country; sheep manure resources are concentrated on the western seaboard, while the largest biomethane resource from household organic waste is found in urban and city areas (63% of household organic waste biomethane resource).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Publicly fundedAuthors: Ian Kilgallon; Richard O'Shea; David M. Wall; Jerry D. Murphy;Abstract Six EU gas grids have a target of 100% substitution of natural gas with renewable gas by 2050. This industry will start with biogas upgraded to biomethane. The biomethane resource and location of waste substrates (such as agricultural slurries, slaughterhouse waste, milk processing waste, and source separated household organic waste) were determined using the most recent spatially explicit data for Ireland. The total biomethane resource was estimated equivalent to: 7.6% of natural gas usage, 7% of energy in transport; 52% of the fuel usage in heavy goods vehicles in 2013. In terms of natural gas usage it corresponded to 26.5% of industrial gas use, and 52% of residential natural gas use. The resource as a source of thermal energy is equivalent to wood chips from 16.5% of arable land under short rotation coppice willow. Thematic maps illustrating the location of each resource were developed to highlight regions of significant biomethane production potential. The regions with the greatest resource of cattle slurry are located in the south and east of the country; sheep manure resources are concentrated on the western seaboard, while the largest biomethane resource from household organic waste is found in urban and city areas (63% of household organic waste biomethane resource).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.05.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedFunded by:EPAEPABenteng Wu; Richen Lin; Richard O'Shea; Chen Deng; Karthik Rajendran; Jerry D. Murphy;handle: 10468/13394
Abstract In the transition to a climate neutral future, the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies, together with power to gas (P2G) systems can generate green renewable gas, which is essential to reduce the GHG footprint of industry. However, each technology faces challenges with respect to sustainability and conversion efficiency. Here this study identifies an optimal pathway, leading to a sustainable bioenergy system where the carbon released in the fuel is offset by the GHG savings of the circular bio-based system. It provides a state-of-the-art review of individual technologies and proposes a bespoke circular cascading bio-based system with anaerobic digestion as the key platform, integrating electro-fuels via P2G systems and value-added pyrochar via pyrolysis of solid digestate. The mass and energy analysis suggests that a reduction of 11% in digestate mass flow with the production of pyrochar, bio-oil and syngas and an increase of 70% in biomethane production with the utilization of curtailed or constrained electricity can be achieved in the proposed bio-based system, enabling a 70% increase in net energy output as compared with a conventional biomethane system. However, the carbon footprint of the electricity from which the hydrogen is sourced is shown to be a critical parameter in assessing the GHG balance of the bespoke system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedFunded by:EPAEPABenteng Wu; Richen Lin; Richard O'Shea; Chen Deng; Karthik Rajendran; Jerry D. Murphy;handle: 10468/13394
Abstract In the transition to a climate neutral future, the transportation sector needs to be sustainably decarbonized. Producing advanced fuels (such as biomethane) and bio-based valorised products (such as pyrochar) may offer a solution to significantly reduce greenhouse gas (GHG) emissions associated with energy and agricultural circular economy systems. Biological and thermochemical bioenergy technologies, together with power to gas (P2G) systems can generate green renewable gas, which is essential to reduce the GHG footprint of industry. However, each technology faces challenges with respect to sustainability and conversion efficiency. Here this study identifies an optimal pathway, leading to a sustainable bioenergy system where the carbon released in the fuel is offset by the GHG savings of the circular bio-based system. It provides a state-of-the-art review of individual technologies and proposes a bespoke circular cascading bio-based system with anaerobic digestion as the key platform, integrating electro-fuels via P2G systems and value-added pyrochar via pyrolysis of solid digestate. The mass and energy analysis suggests that a reduction of 11% in digestate mass flow with the production of pyrochar, bio-oil and syngas and an increase of 70% in biomethane production with the utilization of curtailed or constrained electricity can be achieved in the proposed bio-based system, enabling a 70% increase in net energy output as compared with a conventional biomethane system. However, the carbon footprint of the electricity from which the hydrogen is sourced is shown to be a critical parameter in assessing the GHG balance of the bespoke system.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Publicly fundedFunded by:Sustainable Energy Authority of Ireland, EPASustainable Energy Authority of Ireland ,EPAChen Deng; Richen Lin; Xihui Kang; Benteng Wu; Xue Ning; David Wall; Jerry D. Murphy;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Publicly fundedFunded by:Sustainable Energy Authority of Ireland, EPASustainable Energy Authority of Ireland ,EPAChen Deng; Richen Lin; Xihui Kang; Benteng Wu; Xue Ning; David Wall; Jerry D. Murphy;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2022.135915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: O'Shea, Richard; Wall, David M.; McDonagh, Shane; Murphy, Jerry D.;handle: 10468/4638
Abstract The suitability of existing sources of CO2 in a region (Ireland) for use in power to gas systems was determined using multi criteria decision analysis. The main sources of CO2 were from the combustion of fossil fuels, cement production, alcohol production, and wastewater treatment plants. The criteria used to assess the suitability of CO2 sources were: annual quantity of CO2 emitted; concentration of CO2 in the gas; CO2 source; distance to the electricity network; and distance to the gas network. The most suitable sources of CO2 were found to be distilleries, and wastewater treatment plants with anaerobic digesters. The most suitable source of CO2, a large distillery, could be used to convert 461 GWh/a of electricity into 258 GWh/a of methane. The total electricity requirement of this system is larger than the 348 GWh of renewable electricity dispatched down in Ireland in 2015. This could allow for the conversion of electricity that would be curtailed into a valuable energy vector. The resulting methane could fuel 729 compressed natural gas fuelled buses per annum. Synergies in integrating power to gas at a wastewater treatment plant include use of oxygen in the wastewater treatment process.
Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: O'Shea, Richard; Wall, David M.; McDonagh, Shane; Murphy, Jerry D.;handle: 10468/4638
Abstract The suitability of existing sources of CO2 in a region (Ireland) for use in power to gas systems was determined using multi criteria decision analysis. The main sources of CO2 were from the combustion of fossil fuels, cement production, alcohol production, and wastewater treatment plants. The criteria used to assess the suitability of CO2 sources were: annual quantity of CO2 emitted; concentration of CO2 in the gas; CO2 source; distance to the electricity network; and distance to the gas network. The most suitable sources of CO2 were found to be distilleries, and wastewater treatment plants with anaerobic digesters. The most suitable source of CO2, a large distillery, could be used to convert 461 GWh/a of electricity into 258 GWh/a of methane. The total electricity requirement of this system is larger than the 348 GWh of renewable electricity dispatched down in Ireland in 2015. This could allow for the conversion of electricity that would be curtailed into a valuable energy vector. The resulting methane could fuel 729 compressed natural gas fuelled buses per annum. Synergies in integrating power to gas at a wastewater treatment plant include use of oxygen in the wastewater treatment process.
Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)Cork Open Research Archive (CORA)Article . 2017License: CC BY NC NDData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedBenteng Wu; Richen Lin; Xihui Kang; Chen Deng; Alan D.W. Dobson; Jerry D. Murphy;handle: 10468/13400
Abstract Ex-situ biomethanation (CO2 + 4H2 → CH4 + 2H2O) can simultaneously achieve renewable electricity storage and CO2 valorisation. However, fluctuations in variable renewable electricity may lead to intermittent hydrogen supply, which is shown to adversely affect microbial activity and performance of the biomethanation process. Carbonaceous materials may act as an abiotic additive to enhance microbial robustness and improve system performance. Nanomaterial graphene and pyrochar were compared to assess their effects on biomethanation systems with an intermittent supply of hydrogen. Results revealed that intermittent gas supply caused deterioration in the restart performance with only 66% of theoretical methane production obtained in the control compared with 84% under steady state conditions. The addition of graphene in biomethanation led to 78% of the theoretical methane production after repetitive intermittent supply; this improvement is postulated to be due to its high electrical conductivity and large specific surface (500 m2/g). In comparison, pyrochar amendment did not lead to a significant improvement in upgrading performance. Microbial analysis showed that the OTUs affiliated to bacteria withinin the order SHA-98 (42.9% in abundance) and archaea from the genus Methanothermobacter (99%) may result in the establishment of a new syntrophic relationship to improve the robustness of biomethanation process.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedBenteng Wu; Richen Lin; Xihui Kang; Chen Deng; Alan D.W. Dobson; Jerry D. Murphy;handle: 10468/13400
Abstract Ex-situ biomethanation (CO2 + 4H2 → CH4 + 2H2O) can simultaneously achieve renewable electricity storage and CO2 valorisation. However, fluctuations in variable renewable electricity may lead to intermittent hydrogen supply, which is shown to adversely affect microbial activity and performance of the biomethanation process. Carbonaceous materials may act as an abiotic additive to enhance microbial robustness and improve system performance. Nanomaterial graphene and pyrochar were compared to assess their effects on biomethanation systems with an intermittent supply of hydrogen. Results revealed that intermittent gas supply caused deterioration in the restart performance with only 66% of theoretical methane production obtained in the control compared with 84% under steady state conditions. The addition of graphene in biomethanation led to 78% of the theoretical methane production after repetitive intermittent supply; this improvement is postulated to be due to its high electrical conductivity and large specific surface (500 m2/g). In comparison, pyrochar amendment did not lead to a significant improvement in upgrading performance. Microbial analysis showed that the OTUs affiliated to bacteria withinin the order SHA-98 (42.9% in abundance) and archaea from the genus Methanothermobacter (99%) may result in the establishment of a new syntrophic relationship to improve the robustness of biomethanation process.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefCork Open Research Archive (CORA)Article . 2021License: CC BYData sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Chemical Society (ACS) Publicly fundedAuthors: Nicholas E. Korres; Abdul-Sattar Nizami; Jerry D. Murphy;doi: 10.1021/es901533j
pmid: 20028043
Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu227 citations 227 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Chemical Society (ACS) Publicly fundedAuthors: Nicholas E. Korres; Abdul-Sattar Nizami; Jerry D. Murphy;doi: 10.1021/es901533j
pmid: 20028043
Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu227 citations 227 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es901533j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu