- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, France, Germany, United Kingdom, United Kingdom, France, United Kingdom, Australia, ItalyPublisher:Wiley Funded by:NSF | Amazon forest response to..., EC | GEOCARBONNSF| Amazon forest response to droughts, fire, and land use: a multi-scale approach to forest dieback ,EC| GEOCARBONAuthors: Riccardo Valentini; Gaia Vaglio Laurin; Bernardus H. J. de Jong; Oliver L. Phillips; +33 AuthorsRiccardo Valentini; Gaia Vaglio Laurin; Bernardus H. J. de Jong; Oliver L. Phillips; Hans Verbeeck; Simon Willcock; Pascal Boeckx; Richard Lucas; Arief Wijaya; Jeremy A. Lindsell; Simon L. Lewis; Simon L. Lewis; Nicolas Bayol; Cécile A. J. Girardin; Laszlo Nagy; Slik J.W. Ferry; Ben DeVries; Lan Qie; Elizabeth Kearsley; Elizabeth Kearsley; Marcela J. Quinones; Roberto Cazzolla Gatti; John Armston; Casey M. Ryan; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Terry Sunderland; Gregory P. Asner; Alexandra C. Morel; Peter S. Ashton; Peter S. Ashton; Nicholas J. Berry; Valerio Avitabile; Lindsay F. Banin; Edward T. A. Mitchard; Martin Herold; Gerard B. M. Heuvelink;AbstractWe combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan‐tropical AGB map at 1‐km resolution using an independent reference dataset of field observations and locally calibrated high‐resolution biomass maps, harmonized and upscaled to 14 477 1‐km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N–23.4 S) of 375 Pg dry mass, 9–18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South‐East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15–21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha−1 vs. 21 and 28 Mg ha−1 for the input maps). The fusion method can be applied at any scale including the policy‐relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country‐specific reference datasets.
Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2016Full-Text: http://hdl.handle.net/2067/47810Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95388Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 487 citations 487 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 40visibility views 40 download downloads 1,395 Powered bymore_vert Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2016Full-Text: http://hdl.handle.net/2067/47810Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95388Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, France, Germany, United Kingdom, France, NetherlandsPublisher:IOP Publishing Funded by:UKRI | Tropical Biomes in Transi...UKRI| Tropical Biomes in TransitionAuthors: Danaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; +53 AuthorsDanaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; Sarah Carter; Constant Yves Adou Yao; Esteban Álvarez-Dávila; Kristina J. Anderson‐Teixeira; Alejandro Araujo‐Murakami; Luzmila Arroyo; Benjamin Barca; Timothy R. Baker; Luca Birigazzi; Frans Bongers; Anne Branthomme; Roel Brienen; João M. B. Carreiras; Roberto Cazzolla Gatti; Susan C. Cook‐Patton; Mathieu Decuyper; Ben DeVries; Andrés Espejo; Ted R. Feldpausch; J Fox; Javier G. P. Gamarra; Bronson W. Griscom; Nancy L. Harris; Bruno Hérault; Eurídice N. Honorio Coronado; Inge Jonckheere; Eric Konan; Sara M. Leavitt; Simon L. Lewis; Jeremy Lindsell; Justin Kassi N'dja; Anny Estelle N'Guessan; Beatriz Schwantes Marimon; Edward T. A. Mitchard; A. Monteagudo; Alexandra Morel; Anssi Pekkarinen; Oliver L. Phillips; Lourens Poorter; Lan Qie; Ervan Rutishauser; Casey M. Ryan; Maurizio Santoro; Dos Santos Silayo; Plínio Sist; J. W. Ferry Slik; Bonaventure Sonké; Martin J. P. Sullivan; Gaia Vaglio Laurin; Emilio Vilanova; Maria M. H. Wang; Eliakimu Zahabu; Martin Herold;handle: 2067/47910 , 10023/24951 , 10568/117672
Abstract For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: COREUniversity of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 48visibility views 48 download downloads 67 Powered bymore_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: COREUniversity of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 07 Dec 2023 Italy, Netherlands, Russian Federation, Denmark, United Kingdom, Russian Federation, Italy, United Kingdom, United Kingdom, Czech Republic, Switzerland, FrancePublisher:Springer Science and Business Media LLC Funded by:UKRI | BioResilience: Biodiversi..., UKRI | Assessing the Impacts of ..., EC | FUNDIVEUROPE +7 projectsUKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| FUNDIVEUROPE ,EC| T-FORCES ,UKRI| Niche evolution of South American trees and its consequences ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| Tropical Biomes in Transition ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate changeMo, Lidong; Zohner, Constantin M; Reich, Peter B; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne S; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver L; Gamarra, Javier G P; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves C; Alberti, Giorgio; Almeyda Zambrano, Angelica M; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana F; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo A; Baker, Timothy R; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely G; Bastian, Meredith L; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro H S; Brandl, Susanne; Brearley, Francis Q; Brienen, Roel; Broadbent, Eben N; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo G; Cesljar, Goran; Chazdon, Robin L; Chen, Han Y H; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel D; Coomes, David A; Cornejo Valverde, Fernando; Corral-Rivas, José J; Crim, Philip M; Cumming, Jonathan R; Dayanandan, Selvadurai; de Gasper, André L; Decuyper, Mathieu; Derroire, Géraldine; DeVries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian J; Eyre, Teresa J; Fandohan, Adandé Belarmain; Fayle, Tom M; Feldpausch, Ted R; Ferreira, Leandro V; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry B; Harris, David J; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John L; Hillers, Annika; Honorio Coronado, Eurídice N; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej M; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos A; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah K; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy J; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia V; Maitner, Brian S; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew R; Martin, Emanuel H; Meave, Jorge A; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa S; Mukul, Sharif A; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor J; Nevenic, Radovan V; Ngugi, Michael R; Niklaus, Pascal A; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena I; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo L; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F; Piotto, Daniel; Pitman, Nigel C A; Poulsen, Axel Dalberg; Poulsen, John R; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir G; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric B; Seben, Vladimír; Serra-Diaz, Josep M; Sheil, Douglas; Shvidenko, Anatoly Z; Silva-Espejo, Javier E; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre F; Stereńczak, Krzysztof J; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 United StatesPublisher:OpenAlex Haozhi Ma; Thomas W. Crowther; Lidong Mo; Daniel S. Maynard; Susanne S. Renner; Johan van den Hoogen; Yibiao Zou; Jingjing Liang; Sergio de‐Miguel; Gert‐Jan Nabuurs; Peter B. Reich; Ülo Niinemets; Meinrad Abegg; Yves C. Adou Yao; Giorgio Alberti; Angélica M. Almeyda Zambrano; Braulio Vílchez Alvarado; Esteban Álvarez-Dávila; Patricia Álvarez-Loayza; Luciana F. Alves; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo‐Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard C.; Tim R. Baker; Radomir Bałazy; Olaf Bánki; Jorcely G. Barroso; Meredith L. Bastian; Jean‐François Bastin; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Filippo Bussotti; Roberto Cazzolla Gatti; Ricardo G. César; Goran Češljar; Robin L. Chazdon; Han Y. H. Chen; Chelsea Chisholm; Hyunkook Cho; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Dalla Colletta; David A. Coomes; Fernando Cornejo Valverde; José Javier Corral‐Rivas; Philip M. Crim; Jonathan Cumming; Selvadurai Dayanandan; André Luís de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjević; Jiří Doležal; Aurélie Dourdain; Nestor Laurier Engone Obiang; Brian J. Enquist; Teresa J. Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Ted R. Feldpausch; Leandro Valle Ferreira; Leena Finér; Markus Fischer; Christine Fletcher; Jonas Fridman; Lorenzo Frizzera; Javier G. P. Gamarra; Damiano Gianelle; Henry B. Glick; David J. Harris; Andy Hector; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; John Herbohn; Martin Herold; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Thomas Ibanez; Iêda Leão do Amaral; Nobuo Imai; Andrzej M. Jagodziński; Bogdan Jaroszewicz; Vivian Kvist Johannsen;Résumé Comprendre ce qui contrôle la variation mondiale du type de feuilles dans les arbres est crucial pour comprendre leur rôle dans les écosystèmes terrestres, y compris la dynamique du carbone, de l'eau et des nutriments. Pourtant, notre compréhension des facteurs influençant les types de feuilles forestières reste incomplète, ce qui nous laisse incertain quant aux proportions globales d'arbres à feuilles aiguilles, à feuilles larges, à feuilles persistantes et à feuilles caduques. Pour combler ces lacunes, nous avons mené une évaluation globale de la variation du type de feuilles forestières en intégrant les données de l'inventaire forestier à des enregistrements complets de la forme des feuilles (feuilles larges par rapport aux feuilles aiguilles) et des habitudes (feuilles persistantes par rapport aux feuilles caduques). Nous avons constaté que la variation globale de l'habitude foliaire est principalement due à l'isothermie et aux caractéristiques du sol, tandis que la forme foliaire est principalement due à la température. Compte tenu de ces relations, nous estimons que 38 % des individus arborescents du monde sont à feuilles persistantes aiguilles, 29 % sont à feuilles persistantes feuillues, 27 % sont à feuilles caduques feuillues et 5 % sont à feuilles caduques aiguilles. La distribution de la biomasse aérienne parmi ces types d'arbres est d'environ 21 % (126,4 Gt), 54 % (335,7 Gt), 22 % (136,2 Gt) et 3 % (18,7 Gt), respectivement. Nous prévoyons en outre que, selon les futures trajectoires d'émissions, 17 à 34 % des zones forestières connaîtront des conditions climatiques d'ici la fin du siècle qui supportent actuellement un type de forêt différent, mettant en évidence l'intensification du stress climatique sur les forêts existantes. En quantifiant la distribution des types de feuilles d'arbres et leur biomasse correspondante, et en identifiant les régions où le changement climatique exercera la plus grande pression sur les types de feuilles actuels, nos résultats peuvent aider à améliorer les prévisions du fonctionnement futur des écosystèmes terrestres et du cycle du carbone. Resumen Comprender qué controla la variación global del tipo de hoja en los árboles es crucial para comprender su papel en los ecosistemas terrestres, incluida la dinámica del carbono, el agua y los nutrientes. Sin embargo, nuestra comprensión de los factores que influyen en los tipos de hojas de los bosques sigue siendo incompleta, lo que nos deja inseguros sobre las proporciones globales de árboles de hoja agujada, de hoja ancha, de hoja perenne y de hoja caduca. Para abordar estas brechas, realizamos una evaluación global de la variación del tipo de hoja del bosque mediante la integración de datos de inventario forestal con registros integrales de forma de hoja (hoja ancha frente a hoja de aguja) y hábito (hoja perenne frente a hoja caduca). Encontramos que la variación global en el hábito foliar es impulsada principalmente por la isotérmica y las características del suelo, mientras que la forma de la hoja es predominantemente impulsada por la temperatura. Dadas estas relaciones, estimamos que el 38% de los individuos de árboles globales son de hoja perenne de aguja, el 29% son de hoja perenne de hoja ancha, el 27% son de hoja caduca de hoja ancha y el 5% son de hoja caduca de aguja. La distribución de biomasa sobre el suelo entre estos tipos de árboles es de aproximadamente 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) y 3% (18.7 Gt), respectivamente. Además, proyectamos que, dependiendo de las futuras vías de emisiones, el 17–34% de las áreas boscosas experimentarán condiciones climáticas para finales de siglo que actualmente soportan un tipo de bosque diferente, destacando la intensificación del estrés climático en los bosques existentes. Al cuantificar la distribución de los tipos de hojas de los árboles y su biomasa correspondiente, e identificar las regiones donde el cambio climático ejercerá mayor presión sobre los tipos de hojas actuales, nuestros resultados pueden ayudar a mejorar las predicciones del futuro funcionamiento de los ecosistemas terrestres y el ciclo del carbono. Abstract Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling. إن فهم ما يتحكم في تباين نوع الأوراق العالمي في الأشجار أمر بالغ الأهمية لفهم دورها في النظم الإيكولوجية الأرضية، بما في ذلك ديناميكيات الكربون والماء والمغذيات. ومع ذلك، لا يزال فهمنا للعوامل التي تؤثر على أنواع أوراق الغابات غير مكتمل، مما يجعلنا غير متأكدين من النسب العالمية للأشجار ذات الأوراق الإبرية والأوراق العريضة والدائمة الخضرة والنفضية. لمعالجة هذه الثغرات، أجرينا تقييمًا عالميًا من مصادر أرضية لتباين نوع أوراق الغابات من خلال دمج بيانات جرد الغابات مع شكل ورقة شامل (ورقة عريضة مقابل ورقة إبرة) وسجلات العادة (دائمة الخضرة مقابل نفضية). وجدنا أن التباين العالمي في عادة الأوراق مدفوع في المقام الأول بالحرارة المتساوية وخصائص التربة، في حين أن شكل الورقة مدفوع في الغالب بدرجة الحرارة. وبالنظر إلى هذه العلاقات، فإننا نقدر أن 38 ٪ من أفراد الأشجار العالمية هم من الأشجار دائمة الخضرة ذات الأوراق الإبرة، و 29 ٪ من الأشجار دائمة الخضرة ذات الأوراق العريضة، و 27 ٪ من الأشجار النفضية ذات الأوراق العريضة، و 5 ٪ من الأشجار النفضية ذات الأوراق الإبرة. يبلغ توزيع الكتلة الحيوية فوق الأرض بين هذه الأنواع من الأشجار حوالي 21 ٪ (126.4 جيجا طن) و 54 ٪ (335.7 جيجا طن) و 22 ٪ (136.2 جيجا طن) و 3 ٪ (18.7 جيجا طن) على التوالي. كما نتوقع، اعتمادًا على مسارات الانبعاثات المستقبلية، أن تشهد 17-34 ٪ من المناطق الحرجية ظروفًا مناخية بحلول نهاية القرن تدعم حاليًا نوعًا مختلفًا من الغابات، مما يسلط الضوء على تكثيف الإجهاد المناخي على الغابات الحالية. من خلال تحديد توزيع أنواع أوراق الأشجار والكتلة الحيوية المقابلة لها، وتحديد المناطق التي سيمارس فيها تغير المناخ أكبر ضغط على أنواع الأوراق الحالية، يمكن أن تساعد نتائجنا في تحسين التنبؤات بعمل النظام البيئي الأرضي في المستقبل ودورة الكربون.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/0g11z-dp323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/0g11z-dp323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 United StatesPublisher:OpenAlex Lidong Mo; Constantin M. Zohner; Peter B. Reich; Jingjing Liang; Sergio de‐Miguel; Gert‐Jan Nabuurs; Susanne S. Renner; Johan van den Hoogen; Arnan Araza; Martin Herold; Leila Mirzagholi; Haozhi Ma; Colin Averill; Oliver L. Phillips; Javier G. P. Gamarra; Iris Hordijk; Devin Routh; Meinrad Abegg; Yves C. Adou Yao; Giorgio Alberti; Angélica M. Almeyda Zambrano; Braulio Vílchez Alvarado; Esteban Álvarez-Dávila; Patricia Álvarez-Loayza; Luciana F. Alves; Iêda Leão do Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo‐Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard Corredor; Tim R. Baker; Radomir Bałazy; Olaf Bánki; Jorcely Barroso; Meredith L. Bastian; Jean‐François Bastin; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Filippo Bussotti; Roberto Cazzolla Gatti; Ricardo G. César; Goran Češljar; Robin L. Chazdon; Han Y. H. Chen; Chelsea Chisholm; Hyunkook Cho; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Dalla Colletta; David A. Coomes; Fernando Cornejo Valverde; José Javier Corral‐Rivas; Philip M. Crim; Jonathan Cumming; Selvadurai Dayanandan; André Luís de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjević; Jiří Doležal; Aurélie Dourdain; Nestor Laurier Engone Obiang; Brian J. Enquist; Teresa J. Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Ted R. Feldpausch; Leandro Valle Ferreira; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David J. Harris; Andy Héctor; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Thomas Ibanez; Nobuo Imai; Andrzej M. Jagodziński;Résumé Les forêts sont un puits de carbone terrestre important, mais les changements anthropiques dans l'utilisation des terres et le climat ont considérablement réduit l'échelle de ce système 1 . Les estimations de télédétection pour quantifier les pertes de carbone des forêts mondiales 2–5 sont caractérisées par une incertitude considérable et nous manquons d'une évaluation complète de source terrestre pour comparer ces estimations. Ici, nous combinons plusieurs approches provenant de sources terrestres 6 et satellitaires 2,7,8 pour évaluer l'échelle du potentiel mondial de carbone forestier en dehors des terres agricoles et urbaines. Malgré les variations régionales, les prévisions ont démontré une cohérence remarquable à l'échelle mondiale, avec seulement une différence de 12 % entre les estimations provenant de sources terrestres et celles provenant de satellites. À l'heure actuelle, le stockage mondial du carbone forestier est nettement inférieur au potentiel naturel, avec un déficit total de 226 Gt (gamme de modèles = 151–363 Gt) dans les zones à faible empreinte humaine. La majeure partie (61 %, 139 Gt C) de ce potentiel se trouve dans des zones forestières existantes, dans lesquelles la protection des écosystèmes peut permettre aux forêts de se rétablir jusqu'à maturité. Les 39 % restants (87 Gt C) du potentiel se trouvent dans des régions où les forêts ont été enlevées ou fragmentées. Bien que les forêts ne puissent pas remplacer les réductions d'émissions, nos résultats soutiennent l'idée 2,3,9 que la conservation, la restauration et la gestion durable de diverses forêts offrent des contributions précieuses à la réalisation des objectifs mondiaux en matière de climat et de biodiversité. Resumen Los bosques son un importante sumidero de carbono terrestre, pero los cambios antropogénicos en el uso de la tierra y el clima han reducido considerablemente la escala de este sistema 1 . Las estimaciones de teledetección para cuantificar las pérdidas de carbono de los bosques globales 2–5 se caracterizan por una incertidumbre considerable y carecemos de una evaluación exhaustiva de fuentes terrestres para comparar estas estimaciones. Aquí combinamos varios enfoques de fuentes terrestres 6 y derivados de satélites 2,7,8 para evaluar la escala del potencial global de carbono forestal fuera de las tierras agrícolas y urbanas. A pesar de la variación regional, las predicciones demostraron una consistencia notable a escala global, con solo una diferencia del 12% entre las estimaciones de fuentes terrestres y las derivadas de satélites. En la actualidad, el almacenamiento global de carbono forestal se encuentra marcadamente por debajo del potencial natural, con un déficit total de 226 Gt (rango del modelo = 151-363 Gt) en áreas con baja huella humana. La mayor parte (61%, 139 Gt C) de este potencial se encuentra en áreas con bosques existentes, en las que la protección de los ecosistemas puede permitir que los bosques se recuperen hasta la madurez. El 39% restante (87 Gt C) del potencial se encuentra en regiones en las que los bosques han sido eliminados o fragmentados. Aunque los bosques no pueden ser un sustituto de las reducciones de emisiones, nuestros resultados respaldan la idea 2,3,9 de que la conservación, restauración y gestión sostenible de bosques diversos ofrece contribuciones valiosas para cumplir con los objetivos mundiales de clima y biodiversidad. Abstract Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1 . Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets. تعد الغابات المجردة بالوعة كربون أرضية كبيرة، لكن التغيرات البشرية في استخدام الأراضي والمناخ قللت بشكل كبير من حجم هذا النظام 1 . تتميز تقديرات الاستشعار عن بعد لقياس خسائر الكربون من الغابات العالمية 2–5 بقدر كبير من عدم اليقين ونفتقر إلى تقييم شامل من مصادر أرضية لقياس هذه التقديرات. هنا نجمع بين العديد من الأساليب الأرضية 6 والنهج المستمدة من الأقمار الصناعية 2،7،8 لتقييم حجم إمكانات الكربون في الغابات العالمية خارج الأراضي الزراعية والحضرية. على الرغم من التباين الإقليمي، أظهرت التوقعات اتساقًا ملحوظًا على نطاق عالمي، مع اختلاف بنسبة 12 ٪ فقط بين التقديرات الأرضية والتقديرات المستمدة من الأقمار الصناعية. في الوقت الحاضر، يكون التخزين العالمي للكربون في الغابات تحت الإمكانات الطبيعية بشكل ملحوظ، مع عجز إجمالي قدره 226 جيجا طن (نطاق النموذج = 151–363 جيجا طن) في المناطق ذات البصمة البشرية المنخفضة. وتوجد معظم هذه الإمكانات (61 ٪، 139 جيجا طن) في المناطق التي توجد بها غابات، حيث يمكن لحماية النظام الإيكولوجي أن تسمح للغابات بالتعافي إلى مرحلة النضج. تكمن نسبة 39 ٪ المتبقية (87 جيجا طن) من الإمكانات في المناطق التي تمت فيها إزالة الغابات أو تجزئتها. على الرغم من أن الغابات لا يمكن أن تكون بديلاً عن خفض الانبعاثات، إلا أن نتائجنا تدعم الفكرة 2،3،9 القائلة بأن الحفاظ على الغابات المتنوعة واستعادتها وإدارتها المستدامة تقدم مساهمات قيمة لتحقيق أهداف المناخ العالمي والتنوع البيولوجي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Jingjing Liang; Javier G. P. Gamarra; Nicolas Picard; Mo Zhou; Bryan C. Pijanowski; Douglass F. Jacobs; Peter B. Reich; Thomas W. Crowther; Gert‐Jan Nabuurs; Sergio de‐Miguel; Jingyun Fang; Christopher W. Woodall; Jens‐Christian Svenning; Tommaso Jucker; Jean-François Bastin; Susan K. Wiser; Ferry Slik; Bruno Hérault; Giorgio Alberti; Gunnar Keppel; G.M. Hengeveld; Pierre L. Ibisch; Carlos Antônio da Silva; Hans ter Steege; Pablo Luís Peri; David A. Coomes; Eric B. Searle; Klaus von Gadow; Bogdan Jaroszewicz; Akane Abbasi; Meinrad Abegg; Yves C. Adou Yao; Jesús Aguirre‐Gutiérrez; Angélica M. Almeyda Zambrano; Jan Altman; Esteban Álvarez-Dávila; Juan Gabriél Álvarez‐González; Luciana F. Alves; Bienvenu H.K. Amani; Christian Amani; Christian Ammer; Bhély Angoboy Ilondea; Clara Antón-Fernández; Valerio Avitabile; Gerardo Aymard; Akomian Fortuné Azihou; Johan A. Baard; Tim R. Baker; Radomir Bałazy; Meredith L. Bastian; Rodrigue Batumike; Marijn Bauters; Hans Beeckman; Nithanel Mikael Hendrik Benu; Robert Bitariho; Pascal Boeckx; Jan Bogaert; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Jaime Briseno-Reyes; Eben N. Broadbent; Helge Bruelheide; Erwin Bulte; Ann Christine Catlin; Roberto Cazzolla Gatti; Ricardo G. César; Han Y. H. Chen; Chelsea Chisholm; Emil Cienciala; Gabriel Dalla Colletta; José Javier Corral‐Rivas; Aníbal Cuchietti; Aida Cuni‐Sanchez; Javid Ahmad Dar; Selvadurai Dayanandan; Thalès de Haulleville; Mathieu Decuyper; Sylvain Delabye; Géraldine Derroire; Ben DeVries; John Diisi; Tran Van Do; Jiří Doležal; Aurélie Dourdain; Graham Durrheim; Nestor Laurier Engone Obiang; Corneille E. N. Ewango; Teresa J. Eyre; Tom Fayle; Lethicia Flavine N. Feunang; Leena Finér; Markus Fischer; Jonas Fridman; Lorenzo Frizzera; André Luís de Gasper; Damiano Gianelle; Henry B. Glick;Le gradient de diversité latitudinale (LDG) est l'un des modèles mondiaux de richesse en espèces les plus reconnus dans un large éventail de taxons. De nombreuses hypothèses ont été proposées au cours des deux derniers siècles pour expliquer le LDG, mais des tests rigoureux des facteurs de LDG ont été limités par un manque de données mondiales de haute qualité sur la richesse en espèces. Ici, nous produisons une carte à haute résolution (0,025° × 0,025°) de la richesse des espèces d'arbres locales à l'aide d'une base de données d'inventaire forestier mondial avec des informations sur les arbres individuels et des caractéristiques biophysiques locales à partir d'environ 1,3 million de placettes-échantillons. Nous quantifions ensuite les moteurs des modèles de richesse des espèces d'arbres locales à travers les latitudes. En général, la température moyenne annuelle était un prédicteur dominant de la richesse des espèces d'arbres, ce qui est le plus conforme à la théorie métabolique de la biodiversité (MTB). Cependant, le MTB a sous-estimé le LDG sous les tropiques, où la richesse élevée en espèces a également été modérée par des facteurs topographiques, pédologiques et anthropiques opérant à l'échelle locale. Étant donné que les variables locales du paysage agissent en synergie avec les facteurs bioclimatiques dans la formation du modèle mondial de LDG, nous suggérons que le MTB soit étendu pour tenir compte de la co-limitation par les conducteurs subordonnés. En examinant les facteurs du gradient latitudinal de biodiversité dans une base de données mondiale sur la richesse des espèces locales d'arbres, les auteurs montrent que la co-limitation par de multiples facteurs environnementaux et anthropiques provoque des augmentations plus importantes de la richesse avec la latitude dans les zones tropicales par rapport aux zones tempérées et boréales. El gradiente de diversidad latitudinal (LDG) es uno de los patrones globales más reconocidos de riqueza de especies que se exhiben en una amplia gama de taxones. Se han propuesto numerosas hipótesis en los últimos dos siglos para explicar la LDG, pero las pruebas rigurosas de los impulsores de las LDG se han visto limitadas por la falta de datos globales de alta calidad sobre la riqueza de especies. Aquí producimos un mapa de alta resolución (0.025° × 0.025°) de la riqueza de especies de árboles locales utilizando una base de datos de inventario forestal global con información de árboles individuales y características biofísicas locales de ~ 1.3 millones de parcelas de muestra. A continuación, cuantificamos los impulsores de los patrones de riqueza de especies arbóreas locales en todas las latitudes. En general, la temperatura media anual fue un predictor dominante de la riqueza de especies de árboles, lo que es más consistente con la teoría metabólica de la biodiversidad (MTB). Sin embargo, el MTB subestimó el LDG en los trópicos, donde la alta riqueza de especies también fue moderada por factores topográficos, del suelo y antropogénicos que operan a escala local. Dado que las variables del paisaje local operan sinérgicamente con factores bioclimáticos en la configuración del patrón global de LDG, sugerimos que el MTB se extienda para tener en cuenta la co-limitación por parte de los conductores subordinados. Al examinar los impulsores del gradiente de biodiversidad latitudinal en una base de datos global de la riqueza de especies de árboles locales, los autores muestran que la co-limitación por múltiples factores ambientales y antropogénicos causa aumentos más pronunciados en la riqueza con latitud en zonas tropicales versus templadas y boreales. The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers. Examining drivers of the latitudinal biodiversity gradient in a global database of local tree species richness, the authors show that co-limitation by multiple environmental and anthropogenic factors causes steeper increases in richness with latitude in tropical versus temperate and boreal zones. يعد تدرج التنوع العرضي (LDG) أحد أكثر الأنماط العالمية المعترف بها لثراء الأنواع المعروضة عبر مجموعة واسعة من الأصناف. تم اقتراح العديد من الفرضيات في القرنين الماضيين لشرح غاز الديزل منخفض الكثافة، لكن الاختبارات الصارمة لمحركات غازات الديزل منخفض الكثافة كانت محدودة بسبب نقص بيانات ثراء الأنواع العالمية عالية الجودة. هنا ننتج خريطة عالية الدقة (0.025درجة × 0.025درجة) لثراء أنواع الأشجار المحلية باستخدام قاعدة بيانات جرد الغابات العالمية مع معلومات الأشجار الفردية والخصائص الفيزيائية الحيوية المحلية من حوالي 1.3 مليون قطعة عينة. ثم نحدد العوامل المحركة لأنماط ثراء أنواع الأشجار المحلية عبر خطوط العرض. بشكل عام، كان متوسط درجة الحرارة السنوية مؤشراً مهيمناً على ثراء أنواع الأشجار، وهو الأكثر اتساقاً مع نظرية التمثيل الغذائي للتنوع البيولوجي (MTB). ومع ذلك، قلل MTB من تقدير غاز التدهور المنخفض في المناطق المدارية، حيث كان ثراء الأنواع المرتفع معتدلاً أيضًا بسبب العوامل الطبوغرافية والتربة والعوامل البشرية المنشأ التي تعمل على المستويات المحلية. بالنظر إلى أن متغيرات المناظر الطبيعية المحلية تعمل بشكل تآزري مع العوامل المناخية الحيوية في تشكيل نمط الغازات المتدهورة عالميًا، فإننا نقترح توسيع نطاق الحد الأقصى للمناظر الطبيعية لمراعاة الحد المشترك من قبل الدوافع الثانوية. عند دراسة دوافع تدرج التنوع البيولوجي العرضي في قاعدة بيانات عالمية لثراء أنواع الأشجار المحلية، يوضح المؤلفون أن الحد المشترك من خلال عوامل بيئية وبشرية متعددة يسبب زيادات أكثر حدة في الثراء مع خط العرض في المناطق الاستوائية مقابل المناطق المعتدلة والشمالية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/d5pbt-21y84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/d5pbt-21y84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, France, Germany, United Kingdom, United Kingdom, France, United Kingdom, Australia, ItalyPublisher:Wiley Funded by:NSF | Amazon forest response to..., EC | GEOCARBONNSF| Amazon forest response to droughts, fire, and land use: a multi-scale approach to forest dieback ,EC| GEOCARBONAuthors: Riccardo Valentini; Gaia Vaglio Laurin; Bernardus H. J. de Jong; Oliver L. Phillips; +33 AuthorsRiccardo Valentini; Gaia Vaglio Laurin; Bernardus H. J. de Jong; Oliver L. Phillips; Hans Verbeeck; Simon Willcock; Pascal Boeckx; Richard Lucas; Arief Wijaya; Jeremy A. Lindsell; Simon L. Lewis; Simon L. Lewis; Nicolas Bayol; Cécile A. J. Girardin; Laszlo Nagy; Slik J.W. Ferry; Ben DeVries; Lan Qie; Elizabeth Kearsley; Elizabeth Kearsley; Marcela J. Quinones; Roberto Cazzolla Gatti; John Armston; Casey M. Ryan; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Terry Sunderland; Gregory P. Asner; Alexandra C. Morel; Peter S. Ashton; Peter S. Ashton; Nicholas J. Berry; Valerio Avitabile; Lindsay F. Banin; Edward T. A. Mitchard; Martin Herold; Gerard B. M. Heuvelink;AbstractWe combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan‐tropical AGB map at 1‐km resolution using an independent reference dataset of field observations and locally calibrated high‐resolution biomass maps, harmonized and upscaled to 14 477 1‐km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N–23.4 S) of 375 Pg dry mass, 9–18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South‐East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15–21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha−1 vs. 21 and 28 Mg ha−1 for the input maps). The fusion method can be applied at any scale including the policy‐relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country‐specific reference datasets.
Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2016Full-Text: http://hdl.handle.net/2067/47810Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95388Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 487 citations 487 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 40visibility views 40 download downloads 1,395 Powered bymore_vert Università degli stu... arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2016Full-Text: http://hdl.handle.net/2067/47810Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95388Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Italy, France, Germany, United Kingdom, France, NetherlandsPublisher:IOP Publishing Funded by:UKRI | Tropical Biomes in Transi...UKRI| Tropical Biomes in TransitionAuthors: Danaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; +53 AuthorsDanaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; Sarah Carter; Constant Yves Adou Yao; Esteban Álvarez-Dávila; Kristina J. Anderson‐Teixeira; Alejandro Araujo‐Murakami; Luzmila Arroyo; Benjamin Barca; Timothy R. Baker; Luca Birigazzi; Frans Bongers; Anne Branthomme; Roel Brienen; João M. B. Carreiras; Roberto Cazzolla Gatti; Susan C. Cook‐Patton; Mathieu Decuyper; Ben DeVries; Andrés Espejo; Ted R. Feldpausch; J Fox; Javier G. P. Gamarra; Bronson W. Griscom; Nancy L. Harris; Bruno Hérault; Eurídice N. Honorio Coronado; Inge Jonckheere; Eric Konan; Sara M. Leavitt; Simon L. Lewis; Jeremy Lindsell; Justin Kassi N'dja; Anny Estelle N'Guessan; Beatriz Schwantes Marimon; Edward T. A. Mitchard; A. Monteagudo; Alexandra Morel; Anssi Pekkarinen; Oliver L. Phillips; Lourens Poorter; Lan Qie; Ervan Rutishauser; Casey M. Ryan; Maurizio Santoro; Dos Santos Silayo; Plínio Sist; J. W. Ferry Slik; Bonaventure Sonké; Martin J. P. Sullivan; Gaia Vaglio Laurin; Emilio Vilanova; Maria M. H. Wang; Eliakimu Zahabu; Martin Herold;handle: 2067/47910 , 10023/24951 , 10568/117672
Abstract For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: COREUniversity of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 48visibility views 48 download downloads 67 Powered bymore_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: COREUniversity of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 07 Dec 2023 Italy, Netherlands, Russian Federation, Denmark, United Kingdom, Russian Federation, Italy, United Kingdom, United Kingdom, Czech Republic, Switzerland, FrancePublisher:Springer Science and Business Media LLC Funded by:UKRI | BioResilience: Biodiversi..., UKRI | Assessing the Impacts of ..., EC | FUNDIVEUROPE +7 projectsUKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| FUNDIVEUROPE ,EC| T-FORCES ,UKRI| Niche evolution of South American trees and its consequences ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| Tropical Biomes in Transition ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate changeMo, Lidong; Zohner, Constantin M; Reich, Peter B; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne S; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver L; Gamarra, Javier G P; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves C; Alberti, Giorgio; Almeyda Zambrano, Angelica M; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana F; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo A; Baker, Timothy R; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely G; Bastian, Meredith L; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro H S; Brandl, Susanne; Brearley, Francis Q; Brienen, Roel; Broadbent, Eben N; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo G; Cesljar, Goran; Chazdon, Robin L; Chen, Han Y H; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel D; Coomes, David A; Cornejo Valverde, Fernando; Corral-Rivas, José J; Crim, Philip M; Cumming, Jonathan R; Dayanandan, Selvadurai; de Gasper, André L; Decuyper, Mathieu; Derroire, Géraldine; DeVries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian J; Eyre, Teresa J; Fandohan, Adandé Belarmain; Fayle, Tom M; Feldpausch, Ted R; Ferreira, Leandro V; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry B; Harris, David J; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John L; Hillers, Annika; Honorio Coronado, Eurídice N; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej M; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos A; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah K; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy J; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia V; Maitner, Brian S; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew R; Martin, Emanuel H; Meave, Jorge A; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa S; Mukul, Sharif A; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor J; Nevenic, Radovan V; Ngugi, Michael R; Niklaus, Pascal A; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena I; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo L; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F; Piotto, Daniel; Pitman, Nigel C A; Poulsen, Axel Dalberg; Poulsen, John R; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir G; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric B; Seben, Vladimír; Serra-Diaz, Josep M; Sheil, Douglas; Shvidenko, Anatoly Z; Silva-Espejo, Javier E; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre F; Stereńczak, Krzysztof J; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 United StatesPublisher:OpenAlex Haozhi Ma; Thomas W. Crowther; Lidong Mo; Daniel S. Maynard; Susanne S. Renner; Johan van den Hoogen; Yibiao Zou; Jingjing Liang; Sergio de‐Miguel; Gert‐Jan Nabuurs; Peter B. Reich; Ülo Niinemets; Meinrad Abegg; Yves C. Adou Yao; Giorgio Alberti; Angélica M. Almeyda Zambrano; Braulio Vílchez Alvarado; Esteban Álvarez-Dávila; Patricia Álvarez-Loayza; Luciana F. Alves; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo‐Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard C.; Tim R. Baker; Radomir Bałazy; Olaf Bánki; Jorcely G. Barroso; Meredith L. Bastian; Jean‐François Bastin; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Filippo Bussotti; Roberto Cazzolla Gatti; Ricardo G. César; Goran Češljar; Robin L. Chazdon; Han Y. H. Chen; Chelsea Chisholm; Hyunkook Cho; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Dalla Colletta; David A. Coomes; Fernando Cornejo Valverde; José Javier Corral‐Rivas; Philip M. Crim; Jonathan Cumming; Selvadurai Dayanandan; André Luís de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjević; Jiří Doležal; Aurélie Dourdain; Nestor Laurier Engone Obiang; Brian J. Enquist; Teresa J. Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Ted R. Feldpausch; Leandro Valle Ferreira; Leena Finér; Markus Fischer; Christine Fletcher; Jonas Fridman; Lorenzo Frizzera; Javier G. P. Gamarra; Damiano Gianelle; Henry B. Glick; David J. Harris; Andy Hector; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; John Herbohn; Martin Herold; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Thomas Ibanez; Iêda Leão do Amaral; Nobuo Imai; Andrzej M. Jagodziński; Bogdan Jaroszewicz; Vivian Kvist Johannsen;Résumé Comprendre ce qui contrôle la variation mondiale du type de feuilles dans les arbres est crucial pour comprendre leur rôle dans les écosystèmes terrestres, y compris la dynamique du carbone, de l'eau et des nutriments. Pourtant, notre compréhension des facteurs influençant les types de feuilles forestières reste incomplète, ce qui nous laisse incertain quant aux proportions globales d'arbres à feuilles aiguilles, à feuilles larges, à feuilles persistantes et à feuilles caduques. Pour combler ces lacunes, nous avons mené une évaluation globale de la variation du type de feuilles forestières en intégrant les données de l'inventaire forestier à des enregistrements complets de la forme des feuilles (feuilles larges par rapport aux feuilles aiguilles) et des habitudes (feuilles persistantes par rapport aux feuilles caduques). Nous avons constaté que la variation globale de l'habitude foliaire est principalement due à l'isothermie et aux caractéristiques du sol, tandis que la forme foliaire est principalement due à la température. Compte tenu de ces relations, nous estimons que 38 % des individus arborescents du monde sont à feuilles persistantes aiguilles, 29 % sont à feuilles persistantes feuillues, 27 % sont à feuilles caduques feuillues et 5 % sont à feuilles caduques aiguilles. La distribution de la biomasse aérienne parmi ces types d'arbres est d'environ 21 % (126,4 Gt), 54 % (335,7 Gt), 22 % (136,2 Gt) et 3 % (18,7 Gt), respectivement. Nous prévoyons en outre que, selon les futures trajectoires d'émissions, 17 à 34 % des zones forestières connaîtront des conditions climatiques d'ici la fin du siècle qui supportent actuellement un type de forêt différent, mettant en évidence l'intensification du stress climatique sur les forêts existantes. En quantifiant la distribution des types de feuilles d'arbres et leur biomasse correspondante, et en identifiant les régions où le changement climatique exercera la plus grande pression sur les types de feuilles actuels, nos résultats peuvent aider à améliorer les prévisions du fonctionnement futur des écosystèmes terrestres et du cycle du carbone. Resumen Comprender qué controla la variación global del tipo de hoja en los árboles es crucial para comprender su papel en los ecosistemas terrestres, incluida la dinámica del carbono, el agua y los nutrientes. Sin embargo, nuestra comprensión de los factores que influyen en los tipos de hojas de los bosques sigue siendo incompleta, lo que nos deja inseguros sobre las proporciones globales de árboles de hoja agujada, de hoja ancha, de hoja perenne y de hoja caduca. Para abordar estas brechas, realizamos una evaluación global de la variación del tipo de hoja del bosque mediante la integración de datos de inventario forestal con registros integrales de forma de hoja (hoja ancha frente a hoja de aguja) y hábito (hoja perenne frente a hoja caduca). Encontramos que la variación global en el hábito foliar es impulsada principalmente por la isotérmica y las características del suelo, mientras que la forma de la hoja es predominantemente impulsada por la temperatura. Dadas estas relaciones, estimamos que el 38% de los individuos de árboles globales son de hoja perenne de aguja, el 29% son de hoja perenne de hoja ancha, el 27% son de hoja caduca de hoja ancha y el 5% son de hoja caduca de aguja. La distribución de biomasa sobre el suelo entre estos tipos de árboles es de aproximadamente 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) y 3% (18.7 Gt), respectivamente. Además, proyectamos que, dependiendo de las futuras vías de emisiones, el 17–34% de las áreas boscosas experimentarán condiciones climáticas para finales de siglo que actualmente soportan un tipo de bosque diferente, destacando la intensificación del estrés climático en los bosques existentes. Al cuantificar la distribución de los tipos de hojas de los árboles y su biomasa correspondiente, e identificar las regiones donde el cambio climático ejercerá mayor presión sobre los tipos de hojas actuales, nuestros resultados pueden ayudar a mejorar las predicciones del futuro funcionamiento de los ecosistemas terrestres y el ciclo del carbono. Abstract Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling. إن فهم ما يتحكم في تباين نوع الأوراق العالمي في الأشجار أمر بالغ الأهمية لفهم دورها في النظم الإيكولوجية الأرضية، بما في ذلك ديناميكيات الكربون والماء والمغذيات. ومع ذلك، لا يزال فهمنا للعوامل التي تؤثر على أنواع أوراق الغابات غير مكتمل، مما يجعلنا غير متأكدين من النسب العالمية للأشجار ذات الأوراق الإبرية والأوراق العريضة والدائمة الخضرة والنفضية. لمعالجة هذه الثغرات، أجرينا تقييمًا عالميًا من مصادر أرضية لتباين نوع أوراق الغابات من خلال دمج بيانات جرد الغابات مع شكل ورقة شامل (ورقة عريضة مقابل ورقة إبرة) وسجلات العادة (دائمة الخضرة مقابل نفضية). وجدنا أن التباين العالمي في عادة الأوراق مدفوع في المقام الأول بالحرارة المتساوية وخصائص التربة، في حين أن شكل الورقة مدفوع في الغالب بدرجة الحرارة. وبالنظر إلى هذه العلاقات، فإننا نقدر أن 38 ٪ من أفراد الأشجار العالمية هم من الأشجار دائمة الخضرة ذات الأوراق الإبرة، و 29 ٪ من الأشجار دائمة الخضرة ذات الأوراق العريضة، و 27 ٪ من الأشجار النفضية ذات الأوراق العريضة، و 5 ٪ من الأشجار النفضية ذات الأوراق الإبرة. يبلغ توزيع الكتلة الحيوية فوق الأرض بين هذه الأنواع من الأشجار حوالي 21 ٪ (126.4 جيجا طن) و 54 ٪ (335.7 جيجا طن) و 22 ٪ (136.2 جيجا طن) و 3 ٪ (18.7 جيجا طن) على التوالي. كما نتوقع، اعتمادًا على مسارات الانبعاثات المستقبلية، أن تشهد 17-34 ٪ من المناطق الحرجية ظروفًا مناخية بحلول نهاية القرن تدعم حاليًا نوعًا مختلفًا من الغابات، مما يسلط الضوء على تكثيف الإجهاد المناخي على الغابات الحالية. من خلال تحديد توزيع أنواع أوراق الأشجار والكتلة الحيوية المقابلة لها، وتحديد المناطق التي سيمارس فيها تغير المناخ أكبر ضغط على أنواع الأوراق الحالية، يمكن أن تساعد نتائجنا في تحسين التنبؤات بعمل النظام البيئي الأرضي في المستقبل ودورة الكربون.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/0g11z-dp323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/0g11z-dp323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2023 United StatesPublisher:OpenAlex Lidong Mo; Constantin M. Zohner; Peter B. Reich; Jingjing Liang; Sergio de‐Miguel; Gert‐Jan Nabuurs; Susanne S. Renner; Johan van den Hoogen; Arnan Araza; Martin Herold; Leila Mirzagholi; Haozhi Ma; Colin Averill; Oliver L. Phillips; Javier G. P. Gamarra; Iris Hordijk; Devin Routh; Meinrad Abegg; Yves C. Adou Yao; Giorgio Alberti; Angélica M. Almeyda Zambrano; Braulio Vílchez Alvarado; Esteban Álvarez-Dávila; Patricia Álvarez-Loayza; Luciana F. Alves; Iêda Leão do Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo‐Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard Corredor; Tim R. Baker; Radomir Bałazy; Olaf Bánki; Jorcely Barroso; Meredith L. Bastian; Jean‐François Bastin; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro Henrique Santin Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Filippo Bussotti; Roberto Cazzolla Gatti; Ricardo G. César; Goran Češljar; Robin L. Chazdon; Han Y. H. Chen; Chelsea Chisholm; Hyunkook Cho; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Dalla Colletta; David A. Coomes; Fernando Cornejo Valverde; José Javier Corral‐Rivas; Philip M. Crim; Jonathan Cumming; Selvadurai Dayanandan; André Luís de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjević; Jiří Doležal; Aurélie Dourdain; Nestor Laurier Engone Obiang; Brian J. Enquist; Teresa J. Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Ted R. Feldpausch; Leandro Valle Ferreira; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David J. Harris; Andy Héctor; Andreas Hemp; G.M. Hengeveld; Bruno Hérault; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Thomas Ibanez; Nobuo Imai; Andrzej M. Jagodziński;Résumé Les forêts sont un puits de carbone terrestre important, mais les changements anthropiques dans l'utilisation des terres et le climat ont considérablement réduit l'échelle de ce système 1 . Les estimations de télédétection pour quantifier les pertes de carbone des forêts mondiales 2–5 sont caractérisées par une incertitude considérable et nous manquons d'une évaluation complète de source terrestre pour comparer ces estimations. Ici, nous combinons plusieurs approches provenant de sources terrestres 6 et satellitaires 2,7,8 pour évaluer l'échelle du potentiel mondial de carbone forestier en dehors des terres agricoles et urbaines. Malgré les variations régionales, les prévisions ont démontré une cohérence remarquable à l'échelle mondiale, avec seulement une différence de 12 % entre les estimations provenant de sources terrestres et celles provenant de satellites. À l'heure actuelle, le stockage mondial du carbone forestier est nettement inférieur au potentiel naturel, avec un déficit total de 226 Gt (gamme de modèles = 151–363 Gt) dans les zones à faible empreinte humaine. La majeure partie (61 %, 139 Gt C) de ce potentiel se trouve dans des zones forestières existantes, dans lesquelles la protection des écosystèmes peut permettre aux forêts de se rétablir jusqu'à maturité. Les 39 % restants (87 Gt C) du potentiel se trouvent dans des régions où les forêts ont été enlevées ou fragmentées. Bien que les forêts ne puissent pas remplacer les réductions d'émissions, nos résultats soutiennent l'idée 2,3,9 que la conservation, la restauration et la gestion durable de diverses forêts offrent des contributions précieuses à la réalisation des objectifs mondiaux en matière de climat et de biodiversité. Resumen Los bosques son un importante sumidero de carbono terrestre, pero los cambios antropogénicos en el uso de la tierra y el clima han reducido considerablemente la escala de este sistema 1 . Las estimaciones de teledetección para cuantificar las pérdidas de carbono de los bosques globales 2–5 se caracterizan por una incertidumbre considerable y carecemos de una evaluación exhaustiva de fuentes terrestres para comparar estas estimaciones. Aquí combinamos varios enfoques de fuentes terrestres 6 y derivados de satélites 2,7,8 para evaluar la escala del potencial global de carbono forestal fuera de las tierras agrícolas y urbanas. A pesar de la variación regional, las predicciones demostraron una consistencia notable a escala global, con solo una diferencia del 12% entre las estimaciones de fuentes terrestres y las derivadas de satélites. En la actualidad, el almacenamiento global de carbono forestal se encuentra marcadamente por debajo del potencial natural, con un déficit total de 226 Gt (rango del modelo = 151-363 Gt) en áreas con baja huella humana. La mayor parte (61%, 139 Gt C) de este potencial se encuentra en áreas con bosques existentes, en las que la protección de los ecosistemas puede permitir que los bosques se recuperen hasta la madurez. El 39% restante (87 Gt C) del potencial se encuentra en regiones en las que los bosques han sido eliminados o fragmentados. Aunque los bosques no pueden ser un sustituto de las reducciones de emisiones, nuestros resultados respaldan la idea 2,3,9 de que la conservación, restauración y gestión sostenible de bosques diversos ofrece contribuciones valiosas para cumplir con los objetivos mundiales de clima y biodiversidad. Abstract Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1 . Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets. تعد الغابات المجردة بالوعة كربون أرضية كبيرة، لكن التغيرات البشرية في استخدام الأراضي والمناخ قللت بشكل كبير من حجم هذا النظام 1 . تتميز تقديرات الاستشعار عن بعد لقياس خسائر الكربون من الغابات العالمية 2–5 بقدر كبير من عدم اليقين ونفتقر إلى تقييم شامل من مصادر أرضية لقياس هذه التقديرات. هنا نجمع بين العديد من الأساليب الأرضية 6 والنهج المستمدة من الأقمار الصناعية 2،7،8 لتقييم حجم إمكانات الكربون في الغابات العالمية خارج الأراضي الزراعية والحضرية. على الرغم من التباين الإقليمي، أظهرت التوقعات اتساقًا ملحوظًا على نطاق عالمي، مع اختلاف بنسبة 12 ٪ فقط بين التقديرات الأرضية والتقديرات المستمدة من الأقمار الصناعية. في الوقت الحاضر، يكون التخزين العالمي للكربون في الغابات تحت الإمكانات الطبيعية بشكل ملحوظ، مع عجز إجمالي قدره 226 جيجا طن (نطاق النموذج = 151–363 جيجا طن) في المناطق ذات البصمة البشرية المنخفضة. وتوجد معظم هذه الإمكانات (61 ٪، 139 جيجا طن) في المناطق التي توجد بها غابات، حيث يمكن لحماية النظام الإيكولوجي أن تسمح للغابات بالتعافي إلى مرحلة النضج. تكمن نسبة 39 ٪ المتبقية (87 جيجا طن) من الإمكانات في المناطق التي تمت فيها إزالة الغابات أو تجزئتها. على الرغم من أن الغابات لا يمكن أن تكون بديلاً عن خفض الانبعاثات، إلا أن نتائجنا تدعم الفكرة 2،3،9 القائلة بأن الحفاظ على الغابات المتنوعة واستعادتها وإدارتها المستدامة تقدم مساهمات قيمة لتحقيق أهداف المناخ العالمي والتنوع البيولوجي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/wyx6q-sam13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Jingjing Liang; Javier G. P. Gamarra; Nicolas Picard; Mo Zhou; Bryan C. Pijanowski; Douglass F. Jacobs; Peter B. Reich; Thomas W. Crowther; Gert‐Jan Nabuurs; Sergio de‐Miguel; Jingyun Fang; Christopher W. Woodall; Jens‐Christian Svenning; Tommaso Jucker; Jean-François Bastin; Susan K. Wiser; Ferry Slik; Bruno Hérault; Giorgio Alberti; Gunnar Keppel; G.M. Hengeveld; Pierre L. Ibisch; Carlos Antônio da Silva; Hans ter Steege; Pablo Luís Peri; David A. Coomes; Eric B. Searle; Klaus von Gadow; Bogdan Jaroszewicz; Akane Abbasi; Meinrad Abegg; Yves C. Adou Yao; Jesús Aguirre‐Gutiérrez; Angélica M. Almeyda Zambrano; Jan Altman; Esteban Álvarez-Dávila; Juan Gabriél Álvarez‐González; Luciana F. Alves; Bienvenu H.K. Amani; Christian Amani; Christian Ammer; Bhély Angoboy Ilondea; Clara Antón-Fernández; Valerio Avitabile; Gerardo Aymard; Akomian Fortuné Azihou; Johan A. Baard; Tim R. Baker; Radomir Bałazy; Meredith L. Bastian; Rodrigue Batumike; Marijn Bauters; Hans Beeckman; Nithanel Mikael Hendrik Benu; Robert Bitariho; Pascal Boeckx; Jan Bogaert; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Jaime Briseno-Reyes; Eben N. Broadbent; Helge Bruelheide; Erwin Bulte; Ann Christine Catlin; Roberto Cazzolla Gatti; Ricardo G. César; Han Y. H. Chen; Chelsea Chisholm; Emil Cienciala; Gabriel Dalla Colletta; José Javier Corral‐Rivas; Aníbal Cuchietti; Aida Cuni‐Sanchez; Javid Ahmad Dar; Selvadurai Dayanandan; Thalès de Haulleville; Mathieu Decuyper; Sylvain Delabye; Géraldine Derroire; Ben DeVries; John Diisi; Tran Van Do; Jiří Doležal; Aurélie Dourdain; Graham Durrheim; Nestor Laurier Engone Obiang; Corneille E. N. Ewango; Teresa J. Eyre; Tom Fayle; Lethicia Flavine N. Feunang; Leena Finér; Markus Fischer; Jonas Fridman; Lorenzo Frizzera; André Luís de Gasper; Damiano Gianelle; Henry B. Glick;Le gradient de diversité latitudinale (LDG) est l'un des modèles mondiaux de richesse en espèces les plus reconnus dans un large éventail de taxons. De nombreuses hypothèses ont été proposées au cours des deux derniers siècles pour expliquer le LDG, mais des tests rigoureux des facteurs de LDG ont été limités par un manque de données mondiales de haute qualité sur la richesse en espèces. Ici, nous produisons une carte à haute résolution (0,025° × 0,025°) de la richesse des espèces d'arbres locales à l'aide d'une base de données d'inventaire forestier mondial avec des informations sur les arbres individuels et des caractéristiques biophysiques locales à partir d'environ 1,3 million de placettes-échantillons. Nous quantifions ensuite les moteurs des modèles de richesse des espèces d'arbres locales à travers les latitudes. En général, la température moyenne annuelle était un prédicteur dominant de la richesse des espèces d'arbres, ce qui est le plus conforme à la théorie métabolique de la biodiversité (MTB). Cependant, le MTB a sous-estimé le LDG sous les tropiques, où la richesse élevée en espèces a également été modérée par des facteurs topographiques, pédologiques et anthropiques opérant à l'échelle locale. Étant donné que les variables locales du paysage agissent en synergie avec les facteurs bioclimatiques dans la formation du modèle mondial de LDG, nous suggérons que le MTB soit étendu pour tenir compte de la co-limitation par les conducteurs subordonnés. En examinant les facteurs du gradient latitudinal de biodiversité dans une base de données mondiale sur la richesse des espèces locales d'arbres, les auteurs montrent que la co-limitation par de multiples facteurs environnementaux et anthropiques provoque des augmentations plus importantes de la richesse avec la latitude dans les zones tropicales par rapport aux zones tempérées et boréales. El gradiente de diversidad latitudinal (LDG) es uno de los patrones globales más reconocidos de riqueza de especies que se exhiben en una amplia gama de taxones. Se han propuesto numerosas hipótesis en los últimos dos siglos para explicar la LDG, pero las pruebas rigurosas de los impulsores de las LDG se han visto limitadas por la falta de datos globales de alta calidad sobre la riqueza de especies. Aquí producimos un mapa de alta resolución (0.025° × 0.025°) de la riqueza de especies de árboles locales utilizando una base de datos de inventario forestal global con información de árboles individuales y características biofísicas locales de ~ 1.3 millones de parcelas de muestra. A continuación, cuantificamos los impulsores de los patrones de riqueza de especies arbóreas locales en todas las latitudes. En general, la temperatura media anual fue un predictor dominante de la riqueza de especies de árboles, lo que es más consistente con la teoría metabólica de la biodiversidad (MTB). Sin embargo, el MTB subestimó el LDG en los trópicos, donde la alta riqueza de especies también fue moderada por factores topográficos, del suelo y antropogénicos que operan a escala local. Dado que las variables del paisaje local operan sinérgicamente con factores bioclimáticos en la configuración del patrón global de LDG, sugerimos que el MTB se extienda para tener en cuenta la co-limitación por parte de los conductores subordinados. Al examinar los impulsores del gradiente de biodiversidad latitudinal en una base de datos global de la riqueza de especies de árboles locales, los autores muestran que la co-limitación por múltiples factores ambientales y antropogénicos causa aumentos más pronunciados en la riqueza con latitud en zonas tropicales versus templadas y boreales. The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers. Examining drivers of the latitudinal biodiversity gradient in a global database of local tree species richness, the authors show that co-limitation by multiple environmental and anthropogenic factors causes steeper increases in richness with latitude in tropical versus temperate and boreal zones. يعد تدرج التنوع العرضي (LDG) أحد أكثر الأنماط العالمية المعترف بها لثراء الأنواع المعروضة عبر مجموعة واسعة من الأصناف. تم اقتراح العديد من الفرضيات في القرنين الماضيين لشرح غاز الديزل منخفض الكثافة، لكن الاختبارات الصارمة لمحركات غازات الديزل منخفض الكثافة كانت محدودة بسبب نقص بيانات ثراء الأنواع العالمية عالية الجودة. هنا ننتج خريطة عالية الدقة (0.025درجة × 0.025درجة) لثراء أنواع الأشجار المحلية باستخدام قاعدة بيانات جرد الغابات العالمية مع معلومات الأشجار الفردية والخصائص الفيزيائية الحيوية المحلية من حوالي 1.3 مليون قطعة عينة. ثم نحدد العوامل المحركة لأنماط ثراء أنواع الأشجار المحلية عبر خطوط العرض. بشكل عام، كان متوسط درجة الحرارة السنوية مؤشراً مهيمناً على ثراء أنواع الأشجار، وهو الأكثر اتساقاً مع نظرية التمثيل الغذائي للتنوع البيولوجي (MTB). ومع ذلك، قلل MTB من تقدير غاز التدهور المنخفض في المناطق المدارية، حيث كان ثراء الأنواع المرتفع معتدلاً أيضًا بسبب العوامل الطبوغرافية والتربة والعوامل البشرية المنشأ التي تعمل على المستويات المحلية. بالنظر إلى أن متغيرات المناظر الطبيعية المحلية تعمل بشكل تآزري مع العوامل المناخية الحيوية في تشكيل نمط الغازات المتدهورة عالميًا، فإننا نقترح توسيع نطاق الحد الأقصى للمناظر الطبيعية لمراعاة الحد المشترك من قبل الدوافع الثانوية. عند دراسة دوافع تدرج التنوع البيولوجي العرضي في قاعدة بيانات عالمية لثراء أنواع الأشجار المحلية، يوضح المؤلفون أن الحد المشترك من خلال عوامل بيئية وبشرية متعددة يسبب زيادات أكثر حدة في الثراء مع خط العرض في المناطق الاستوائية مقابل المناطق المعتدلة والشمالية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/d5pbt-21y84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/d5pbt-21y84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu