- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Kulyash Meiramkulova; Duman Orynbekov; Gulnur Saspugayeva; Karlygash Aubakirova; +5 AuthorsKulyash Meiramkulova; Duman Orynbekov; Gulnur Saspugayeva; Karlygash Aubakirova; Sholpan Arystanova; Aliya Kydyrbekova; Erbolat Tashenov; Kartjanov Nurlan; Timoth Mkilima;doi: 10.3390/su12156097
Poultry slaughterhouse wastewater is characterized by high pollution strength, making its treatment before discharge or recycling of great importance. This study investigated the potential influence of mixing ratios on the treatability of poultry slaughterhouse wastewater under three different mixing ratios; 20:80, 50:50, and 80:20 of defeathering and cooling sources, respectively. Wastewater samples were collected from the Izhevski production corporate (PC) poultry farm located in the Akmola region, Kazakhstan. The lab-scale treatment plant, designed to simulate the industrial-scale treatment plant of the poultry farm, consists of electrolysis, membrane filtration, and ultraviolet disinfection as the main units. The general design purpose of the Izhevski PC treatment plant is to treat about 1.25 m3/h (51.72%) of the total wastewater generated from the defeathering and cooling sections of the slaughterhouse to a recyclable degree. Water quality indices (WQIs) were developed for each of the studied mixing ratios. A comparative analysis was also done with drinking water quality standards set by the World Health Organization (WHO), as well as the government of Kazakhstan. From the analysis results, the defeathering raw wastewater was generally higher in pollution strength than the cooling wastewater. It was also observed that the increase in the ratio of defeathering wastewater reduced treatment efficiency for some physicochemical parameters such as turbidity, total suspended solids (TSS), color, biochemical oxygen demand (BOD), as well as chemical oxygen demand (COD). However, 100% removal efficiency was achieved for the microbial parameters for all the three studied ratios. Based on the computed WQIs, the highest-quality effluent was achieved from the 20:80 (defeathering:cooling) mixing ratio. However, with the fact that all the three mixing ratios produced “excellent” status, the 80:20 (defeathering:cooling) mixing ratio stands to be an ideal option. The selection of 80:20 mixing ratio has the potential to reduce the pollution load in the wastewater discharged to the sewerage system, while achieving high-quality effluent for recycling in the cooling processes of the slaughterhouse.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6097/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6097/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:EDP Sciences Askar Baubek; Muratbek Arpabekov; Nurlan Kartjanov; Michael Zhumagulov; Samal B. Sadykova;This report dwells on the scientific study of the vortical device. The device is designed for efficient combustion of fossil fuels. Oil-water emulsion was taken as an example of alternative fuel. Although the functionality of the burner device is not limited to this fuel only. The innovative burner device under investigation is based on principal of vortical motion of fuel air mixture. There is a precombustion chamber specially designed, where inflammation and partial combustion of the swirling flow takes place. The article describes experiment on defining the geometric dimensioning of the burner discharge nozzle in relation to a combustion chamber. The position of the outlet nozzle inside of the burner is the main input parameter of this research. The authors analyzed the influence of this parameter on the pressure inside the combustion chamber and the electric load of the fan for the supplying combustion air. The position ranged from 0 to 120%. The optimal position is at 50% of the total length of the burner chamber. The pressure graph has an extremum in this position, and the electric energy consumption by the fan changes less significantly with further deepening of the output nozzle than earlier. The Results are presented for cold (air blowing only) and hot experiment (burning). This experiment proved the need for the design of the inner part of the discharge nozzle, which is a design feature of the burner device for which the European patent was obtained. The patent link is presented in the list of references.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017801012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017801012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Kulyash Meiramkulova; Duman Orynbekov; Gulnur Saspugayeva; Karlygash Aubakirova; +5 AuthorsKulyash Meiramkulova; Duman Orynbekov; Gulnur Saspugayeva; Karlygash Aubakirova; Sholpan Arystanova; Aliya Kydyrbekova; Erbolat Tashenov; Kartjanov Nurlan; Timoth Mkilima;doi: 10.3390/su12156097
Poultry slaughterhouse wastewater is characterized by high pollution strength, making its treatment before discharge or recycling of great importance. This study investigated the potential influence of mixing ratios on the treatability of poultry slaughterhouse wastewater under three different mixing ratios; 20:80, 50:50, and 80:20 of defeathering and cooling sources, respectively. Wastewater samples were collected from the Izhevski production corporate (PC) poultry farm located in the Akmola region, Kazakhstan. The lab-scale treatment plant, designed to simulate the industrial-scale treatment plant of the poultry farm, consists of electrolysis, membrane filtration, and ultraviolet disinfection as the main units. The general design purpose of the Izhevski PC treatment plant is to treat about 1.25 m3/h (51.72%) of the total wastewater generated from the defeathering and cooling sections of the slaughterhouse to a recyclable degree. Water quality indices (WQIs) were developed for each of the studied mixing ratios. A comparative analysis was also done with drinking water quality standards set by the World Health Organization (WHO), as well as the government of Kazakhstan. From the analysis results, the defeathering raw wastewater was generally higher in pollution strength than the cooling wastewater. It was also observed that the increase in the ratio of defeathering wastewater reduced treatment efficiency for some physicochemical parameters such as turbidity, total suspended solids (TSS), color, biochemical oxygen demand (BOD), as well as chemical oxygen demand (COD). However, 100% removal efficiency was achieved for the microbial parameters for all the three studied ratios. Based on the computed WQIs, the highest-quality effluent was achieved from the 20:80 (defeathering:cooling) mixing ratio. However, with the fact that all the three mixing ratios produced “excellent” status, the 80:20 (defeathering:cooling) mixing ratio stands to be an ideal option. The selection of 80:20 mixing ratio has the potential to reduce the pollution load in the wastewater discharged to the sewerage system, while achieving high-quality effluent for recycling in the cooling processes of the slaughterhouse.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6097/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/15/6097/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12156097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:EDP Sciences Askar Baubek; Muratbek Arpabekov; Nurlan Kartjanov; Michael Zhumagulov; Samal B. Sadykova;This report dwells on the scientific study of the vortical device. The device is designed for efficient combustion of fossil fuels. Oil-water emulsion was taken as an example of alternative fuel. Although the functionality of the burner device is not limited to this fuel only. The innovative burner device under investigation is based on principal of vortical motion of fuel air mixture. There is a precombustion chamber specially designed, where inflammation and partial combustion of the swirling flow takes place. The article describes experiment on defining the geometric dimensioning of the burner discharge nozzle in relation to a combustion chamber. The position of the outlet nozzle inside of the burner is the main input parameter of this research. The authors analyzed the influence of this parameter on the pressure inside the combustion chamber and the electric load of the fan for the supplying combustion air. The position ranged from 0 to 120%. The optimal position is at 50% of the total length of the burner chamber. The pressure graph has an extremum in this position, and the electric energy consumption by the fan changes less significantly with further deepening of the output nozzle than earlier. The Results are presented for cold (air blowing only) and hot experiment (burning). This experiment proved the need for the design of the inner part of the discharge nozzle, which is a design feature of the burner device for which the European patent was obtained. The patent link is presented in the list of references.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017801012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202017801012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu