- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, ItalyPublisher:Springer Science and Business Media LLC Funded by:UKRI | Diagnosing Earth's Energy...UKRI| Diagnosing Earth's Energy Pathways in the Climate system (DEEP-C)Shuhei Masuda; Andrea Storto; Fabrice Hernandez; Tong Lee; Matthew D. Palmer; Simona Masina; Simona Masina; Nicolas Ferry; Keith Haines; Magdalena Balmaseda; Maria Valdivieso; Takahiro Toyoda; Stephanie Guinehut; Matthew Martin; Simon A. Good; Armin Köhl; Yosuke Fujii; Ou Wang; Christopher D. Roberts; G. Chepurin; K. A. Peterson; Guillaume Vernieres; You-Soon Chang; Yan Xue;Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0-300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993-2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997-2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997-2009. Annual time series of global and hemispheric OHC change for 0-700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization 'shock' over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (+/- 1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady heat uptake of approximately 0.9 +/- 0.8 W m(-2) (expressed relative to Earth's surface area) between 1995 and 2002, which reduces to about 0.2 +/- 0.6 W m(-2) between 2004 and 2006, in qualitative agreement with recent analysis of Earth's energy imbalance. There is a marked reduction in the ensemble spread of OHC trends below 300 m as the Argo profiling float observations become available in the early 2000s. In general, we suggest that ORAs should be treated with caution when employed to understand past ocean warming trends-especially when considering the deeper ocean where there is little in the way of observational constraints. The current work emphasizes the need to better observe the deep ocean, both for providing observational constraints for future ocean state estimation efforts and also to develop improved models and data assimilation methods.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2017License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-015-2801-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 97 citations 97 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 54 Powered bymore_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2017License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-015-2801-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: H.L. Varona; F. Hernandez; A. Bertrand; M. Araujo;The Tropical Atlantic Ocean Database and Monthly Anomalies of River Discharge on Atlantic Ocean datasets encompass the monthly anomalies of a variety of physical, biogeochemical parameters from the tropical Atlantic Ocean and the monthly anomalies of river runoff in the Atlantic Ocean and its adjacent seas. The parameters used as the base for the computation of anomalies come from the TROPFLUX, GPCP, ASCAT, SODA, GODAS, DASK, SeaWiFS, OAFLUX, WAVEWATCH III, NOAA/ESRL 20th Century Reanalysis, GLOBAL_REANALYSIS_BIO_001_029, GLOBAL_REANALYSIS_BIO_001_033, OCEANCOLOUR_GLO_OPTICS_L4_REP_OBSERVATIONS_009_081, OSCAR, SMOS, MODIS-Aqua, CO2_Flux, and GRDC datasets. Several of the anomaly data are redundant, but come from different data sources making comparative studies possible. For ease of use, both datasets are provided in NetCDF format, CF convention. These datasets include 18 files in NetCDF format, which facilitates its handling due to the diversity of freeware tools that exist and are structured in two-, three- and four-dimensional grids. All these anomalies can be useful to oceanographers, meteorologists, ecologists and other researchers for studies of climate variation in the tropical Atlantic Ocean. These datasets are hosted at https://www.seanoe.org/data/00718/82962/ and https://data.mendeley.com/datasets/pn5b35vn6s/1.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.umontpellier.fr/hal-03669637Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2022.107969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.umontpellier.fr/hal-03669637Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2022.107969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: H. L. Varona; F. Hernandez; A. Bertrand; M. Araujo;This dataset contains the monthly, daily and 6-hour anomalies of the wind speed at 10 m, air temperature at 10 m, incident long-wave radiation, incident solar radiation, atmospheric pressure at sea level, the specific humidity at 10 m and precipitation in the entire tropical region (180°W – 178.125°E / 31.4281°S - 31.4281°N), calculated from the CORE v2 dataset (Coordinated Ocean-ice Reference Experiments) experiment with the correction of CIAF v2 (Corrected Inter-Annual Forcing). Covers the period from 1948 to 2009. There are 3 compressed files, each of which contains 6 3D grids in NetCDF files format with the following name description: anom_<frequency>_<variablename>_TROPAAS.nc <frequency>: mm – Monthly means. dm – Daily means. 6hrs – Each 6-hours. <variablename>: precip – Precipitation. q - Specific humidity at 10 m. rad - Incident long-wave radiation and incident solar radiation. Slp - Pressure at sea level. T - Temperature at 10 m. winds - Zonal and meridional components and the module of the wind speed at 10 m. All the grids are made up of 192 x 34 nodes, with a spatial resolution of 1.875 x 1.904733 degrees. Humberto L. Varona acknowledges the TRIATLAS project, which has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 817578. Moacyr Araujo acknowledges the support of the Brazilian Research Network on Global Climate Change-Rede CLIMA (FINEP grants 01.13.0353-00). This work is a contribution to the Projects INCT AmbTropic–Brazilian National Institute of Science and Technology for Tropical Marine Environments (grants 565054/2010-4, 625 8936/2011, and 465634/2014-1, CNPq/FAPESB/CAPES), and to the International Joint Laboratory TAPIOCA (IRD-UFPE-UFRPE). {"references": ["H. L. Varona. (2021). mNC: A tool for Oceanographers and Meteorologists to easily create their NetCDF files using Matlab (1.0). Zenodo. https://doi.org/10.5281/zenodo.5572749", "H. L. Varona. (2021). CalcPlotAnomaly: Matlab function set for the calculation and plotting of anomalies (1.01). Zenodo. https://doi.org/10.5281/zenodo.5576889"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5532991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5532991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, ItalyPublisher:Springer Science and Business Media LLC Funded by:UKRI | Diagnosing Earth's Energy...UKRI| Diagnosing Earth's Energy Pathways in the Climate system (DEEP-C)Shuhei Masuda; Andrea Storto; Fabrice Hernandez; Tong Lee; Matthew D. Palmer; Simona Masina; Simona Masina; Nicolas Ferry; Keith Haines; Magdalena Balmaseda; Maria Valdivieso; Takahiro Toyoda; Stephanie Guinehut; Matthew Martin; Simon A. Good; Armin Köhl; Yosuke Fujii; Ou Wang; Christopher D. Roberts; G. Chepurin; K. A. Peterson; Guillaume Vernieres; You-Soon Chang; Yan Xue;Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0-300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993-2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997-2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997-2009. Annual time series of global and hemispheric OHC change for 0-700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization 'shock' over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (+/- 1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady heat uptake of approximately 0.9 +/- 0.8 W m(-2) (expressed relative to Earth's surface area) between 1995 and 2002, which reduces to about 0.2 +/- 0.6 W m(-2) between 2004 and 2006, in qualitative agreement with recent analysis of Earth's energy imbalance. There is a marked reduction in the ensemble spread of OHC trends below 300 m as the Argo profiling float observations become available in the early 2000s. In general, we suggest that ORAs should be treated with caution when employed to understand past ocean warming trends-especially when considering the deeper ocean where there is little in the way of observational constraints. The current work emphasizes the need to better observe the deep ocean, both for providing observational constraints for future ocean state estimation efforts and also to develop improved models and data assimilation methods.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2017License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-015-2801-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 97 citations 97 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 54 Powered bymore_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2017License: CC BYData sources: CORE (RIOXX-UK Aggregator)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-015-2801-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: H.L. Varona; F. Hernandez; A. Bertrand; M. Araujo;The Tropical Atlantic Ocean Database and Monthly Anomalies of River Discharge on Atlantic Ocean datasets encompass the monthly anomalies of a variety of physical, biogeochemical parameters from the tropical Atlantic Ocean and the monthly anomalies of river runoff in the Atlantic Ocean and its adjacent seas. The parameters used as the base for the computation of anomalies come from the TROPFLUX, GPCP, ASCAT, SODA, GODAS, DASK, SeaWiFS, OAFLUX, WAVEWATCH III, NOAA/ESRL 20th Century Reanalysis, GLOBAL_REANALYSIS_BIO_001_029, GLOBAL_REANALYSIS_BIO_001_033, OCEANCOLOUR_GLO_OPTICS_L4_REP_OBSERVATIONS_009_081, OSCAR, SMOS, MODIS-Aqua, CO2_Flux, and GRDC datasets. Several of the anomaly data are redundant, but come from different data sources making comparative studies possible. For ease of use, both datasets are provided in NetCDF format, CF convention. These datasets include 18 files in NetCDF format, which facilitates its handling due to the diversity of freeware tools that exist and are structured in two-, three- and four-dimensional grids. All these anomalies can be useful to oceanographers, meteorologists, ecologists and other researchers for studies of climate variation in the tropical Atlantic Ocean. These datasets are hosted at https://www.seanoe.org/data/00718/82962/ and https://data.mendeley.com/datasets/pn5b35vn6s/1.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.umontpellier.fr/hal-03669637Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2022.107969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.umontpellier.fr/hal-03669637Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2022.107969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: H. L. Varona; F. Hernandez; A. Bertrand; M. Araujo;This dataset contains the monthly, daily and 6-hour anomalies of the wind speed at 10 m, air temperature at 10 m, incident long-wave radiation, incident solar radiation, atmospheric pressure at sea level, the specific humidity at 10 m and precipitation in the entire tropical region (180°W – 178.125°E / 31.4281°S - 31.4281°N), calculated from the CORE v2 dataset (Coordinated Ocean-ice Reference Experiments) experiment with the correction of CIAF v2 (Corrected Inter-Annual Forcing). Covers the period from 1948 to 2009. There are 3 compressed files, each of which contains 6 3D grids in NetCDF files format with the following name description: anom_<frequency>_<variablename>_TROPAAS.nc <frequency>: mm – Monthly means. dm – Daily means. 6hrs – Each 6-hours. <variablename>: precip – Precipitation. q - Specific humidity at 10 m. rad - Incident long-wave radiation and incident solar radiation. Slp - Pressure at sea level. T - Temperature at 10 m. winds - Zonal and meridional components and the module of the wind speed at 10 m. All the grids are made up of 192 x 34 nodes, with a spatial resolution of 1.875 x 1.904733 degrees. Humberto L. Varona acknowledges the TRIATLAS project, which has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 817578. Moacyr Araujo acknowledges the support of the Brazilian Research Network on Global Climate Change-Rede CLIMA (FINEP grants 01.13.0353-00). This work is a contribution to the Projects INCT AmbTropic–Brazilian National Institute of Science and Technology for Tropical Marine Environments (grants 565054/2010-4, 625 8936/2011, and 465634/2014-1, CNPq/FAPESB/CAPES), and to the International Joint Laboratory TAPIOCA (IRD-UFPE-UFRPE). {"references": ["H. L. Varona. (2021). mNC: A tool for Oceanographers and Meteorologists to easily create their NetCDF files using Matlab (1.0). Zenodo. https://doi.org/10.5281/zenodo.5572749", "H. L. Varona. (2021). CalcPlotAnomaly: Matlab function set for the calculation and plotting of anomalies (1.01). Zenodo. https://doi.org/10.5281/zenodo.5576889"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5532991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5532991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu