- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United States, Belgium, France, United States, Belgium, Australia, France, FrancePublisher:Wiley Publicly fundedFunded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., FCT | LA 1 +2 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,FCT| LA 1 ,EC| IMBALANCE-P ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and modelsKevin Van Sundert; Carly J. Stevens; Johannes M. H. Knops; Martin Schütz; Risto Virtanen; Lori A. Biederman; Xavier Raynaud; Philip A. Fay; Anne Ebeling; Ian Donohue; Amandine Hansart; Andrew S. MacDougall; Christiane Roscher; Eric W. Seabloom; Harry Olde Venterink; Anita C. Risch; Elizabeth T. Borer; Glenda M. Wardle; Timothy Ohlert; Dajana Radujković; Jane A. Catford; Elizabeth H. Boughton; Maria L. Silveira; Peter D. Wragg; Michael Bahn; Sara Vicca; Erik Verbruggen; Anu Eskelinen; Anu Eskelinen; Matteo Campioli;doi: 10.1111/ele.13894
pmid: 34617374
AbstractFertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory‐driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co‐limitation by NP and micronutrients.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Netherlands, United States, Argentina, United States, Netherlands, ArgentinaPublisher:Wiley Elizabeth T. Borer; Lori A. Biederman; Eric W. Seabloom; W. Stanley Harpole; W. Stanley Harpole; John M. Dwyer; John M. Dwyer; Marc W. Cadotte; Brent J. Danielson; Brent Mortensen; Nicole Hagenah; Pablo Luis Peri; Pablo Luis Peri; Carlos Alberto Arnillas; Juan Alberti; Yann Hautier;handle: 11336/90540 , 20.500.12876/23197
Abstract Reductions in community evenness can lead to local extinctions as dominant species exclude subordinate species; however, herbivores can prevent competitive exclusion by consuming otherwise dominant plant species, thus increasing evenness. While these predictions logically result from chronic, gradual reductions in evenness, rapid, temporary pulses of dominance may also reduce species richness. Short pulses of dominance can occur as biotic or abiotic conditions temporarily favour one or a few species, manifested as increased temporal variability (the inverse of temporal stability) in community evenness. Here, we tested whether consumers help maintain plant diversity by reducing the temporal variability in community evenness. We tested our hypothesis by reducing herbivore abundance in a detailed study of a developing, tallgrass prairie restoration. To assess the broader implications of the importance of herbivory on community evenness as well as potential mechanisms, we paired this study with a global herbivore reduction experiment. We found that herbivores maintained plant richness in a tallgrass prairie restoration by limiting temporary pulses in dominance by a single species. Dominance by an annual species in a single year was negatively associated with species richness, suggesting that short pulses of dominance may be sufficient to exclude subordinate species. The generality of this site‐level relationship was supported by the global experiment in which inter‐annual variability in evenness declined in the presence of vertebrate herbivores over timeframes ranging in length from 2 to 5 years, preventing declines in species richness. Furthermore, inter‐annual variability of community evenness was also negatively associated with pre‐treatment species richness. Synthesis. A loss or reduction of herbivores can destabilize plant communities by allowing brief periods of dominance by one or a few species, potentially triggering a feedback cycle of dominance and extinction. Such cycles may not occur immediately following the loss of herbivores, being delayed until conditions allow temporary periods of dominance by a subset of plant species.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Argentina, South Africa, Netherlands, Netherlands, Argentina, Australia, United States, United States, United KingdomPublisher:Wiley Publicly fundedFunded by:NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ..., NSF | LTER: Multi-decadal resp... +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,FCT| LA 1Andrew S. MacDougall; Eric W. Seabloom; Nicole Hagenah; Philip A. Fay; Ramesh Laungani; Marc W. Cadotte; Laura E. Dee; Yvonne M. Buckley; Martin Schuetz; W. Stanley Harpole; W. Stanley Harpole; Peter B. Adler; Scott L. Collins; Johannes M. H. Knops; John W. Morgan; Elizabeth T. Borer; Anita C. Risch; Andy Hector; Forest Isbell; Sarah E. Hobbie; Carly J. Stevens; Jennifer Firn; Joslin L. Moore; Yann Hautier; Suzanne M. Prober; Kimberly J. Komatsu; Timothy Ohlert; Rebecca L. McCulley; Lori A. Biederman; Juan Alberti;AbstractHuman activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient‐induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5–11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient‐induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short‐term experiments may underestimate the long‐term nutrient enrichment effects on global grassland ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 India, United States, United Kingdom, United Kingdom, United States, India, NetherlandsPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSERC, NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi...NSERC ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderAndrew S. MacDougall; Ellen Esch; Qingqing Chen; Oliver Carroll; Colin Bonner; Timothy Ohlert; Matthias Siewert; John Sulik; Anna K. Schweiger; Elizabeth T. Borer; Dilip Naidu; Sumanta Bagchi; Yann Hautier; Peter Wilfahrt; Keith Larson; Johan Olofsson; Elsa Cleland; Ranjan Muthukrishnan; Lydia O’Halloran; Juan Alberti; T. Michael Anderson; Carlos A. Arnillas; Jonathan D. Bakker; Isabel C. Barrio; Lori Biederman; Elizabeth H. Boughton; Lars A. Brudvig; Martin Bruschetti; Yvonne Buckley; Miguel N. Bugalho; Marc W. Cadotte; Maria C. Caldeira; Jane A. Catford; Carla D’Antonio; Kendi Davies; Pedro Daleo; Christopher R. Dickman; Ian Donohue; Mary Ellyn DuPre; Kenneth Elgersma; Nico Eisenhauer; Anu Eskelinen; Catalina Estrada; Philip A. Fay; Yanhao Feng; Daniel S. Gruner; Nicole Hagenah; Sylvia Haider; W. Stanley Harpole; Erika Hersch-Green; Anke Jentsch; Kevin Kirkman; Johannes M. H. Knops; Lauri Laanisto; Lucíola S. Lannes; Ramesh Laungani; Ariuntsetseg Lkhagva; Petr Macek; Jason P. Martina; Rebecca L. McCulley; Brett Melbourne; Rachel Mitchell; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Yujie Niu; Meelis Pärtel; Pablo L. Peri; Sally A. Power; Jodi N. Price; Suzanne M. Prober; Zhengwei Ren; Anita C. Risch; Nicholas G. Smith; Grégory Sonnier; Rachel J. Standish; Carly J. Stevens; Michelle Tedder; Pedro Tognetti; G. F. Veen; Risto Virtanen; Glenda M. Wardle; Elizabeth Waring; Amelia A. Wolf; Laura Yahdjian; Eric W. Seabloom;Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Netherlands, Netherlands, Argentina, India, India, United States, South Africa, Netherlands, United Kingdom, Argentina, Netherlands, NorwayPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Coordination of the ..., FCT | LA 1, NSF | LTER: Biodiversity, Multi... +1 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,FCT| LA 1 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDivMarie Spohn; Sumanta Bagchi; Lori A. Biederman; Elizabeth T. Borer; Kari Anne Bråthen; Miguel N. Bugalho; Maria C. Caldeira; Jane A. Catford; Scott L. Collins; Nico Eisenhauer; Nicole Hagenah; Sylvia Haider; Yann Hautier; Johannes M. H. Knops; Sally E. Koerner; Lauri Laanisto; Ylva Lekberg; Jason P. Martina; Holly M. Martinson; Rebecca L. McCulley; Pablo Luís Peri; Petr Macek; Sally A. Power; Anita C. Risch; Christiane Roscher; Eric W. Seabloom; Carly J. Stevens; G. F. Veen; Risto Virtanen; Laura Yahdjian;pmid: 37857640
pmc: PMC10587103
AbstractLittle is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United States, United Kingdom, United States, United States, Argentina, South Africa, Argentina, AustraliaPublisher:Wiley Funded by:NSF | LTER: Biodiversity, Multi..., NSERC, FCT | LA 1 +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSERC ,FCT| LA 1 ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersMartin Schütz; Lauren L. Sullivan; Elizabeth T. Borer; Peter B. Adler; Mahesh Sankaran; Mahesh Sankaran; Jennifer Firn; James B. Grace; Anita C. Risch; Suzanne M. Prober; Andrew S. MacDougall; Eric W. Seabloom; Lori A. Biederman; Eric M. Lind; W. Stanley Harpole; T. Michael Anderson; Pedro Daleo; Daniel M. Griffith; Rebecca L. McCulley; Nicole Hagenah; Peter D. Wragg; Carly J. Stevens; Dana M. Blumenthal;AbstractPlant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.
CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011Embargo end date: 01 Jan 2011 United States, United Kingdom, United Kingdom, United States, Switzerland, Australia, United States, United States, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | RCN: Coordination of the ...NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersYann Hautier; Anita C. Risch; Andy Hector; Jennifer Firn; Kevin P. Kirkman; Eve I. Gasarch; Andrew S. MacDougall; Eric W. Seabloom; Charles E. Mitchell; Laura B. Calabrese; Suzanne M. Prober; Nicole M. DeCrappeo; Melinda D. Smith; T. Michael Anderson; Nicole Hagenah; Nicole Hagenah; Kathryn L. Cottingham; Peter D. Wragg; Peter B. Adler; John G. Lambrinos; Jonathan D. Bakker; Daneil S. Gruner; James B. Grace; Gang Wang; Elizabeth T. Borer; Scott L. Collins; Brent Mortensen; Kendi F. Davies; Chengjin Chu; Michael J. Crawley; Carly J. Stevens; Carly J. Stevens; Martin Schuetz; Kimberly J. La Pierre; Louie H. Yang; Virginia L. Jin; Joslin L. Moore; John L. Orrock; Helmut Hillebrand; Lauren L. Sullivan; Yvonne M. Buckley; Brett A. Melbourne; Philip A. Fay; W. Stanley Harpole; Johannes M. H. Knops; Adam D. Kay; John W. Morgan; Lori A. Biederman; Paul N. Frater; Ellen I. Damschen; Lydia R. O'Halloran; Justin P. Wright; Julia A. Klein; Wei Li; Hope C. Humphries; Rebecca L. McCulley; Elsa E. Cleland; Janneke Hille Ris Lambers; Cynthia S. Brown; David A. Pyke;Standardized sampling from many sites worldwide was used to address an important ecological problem.
CORE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2011 . Peer-reviewedData sources: Zurich Open Repository and ArchiveThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of St. Thomas: UST Research OnlineArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1204498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 489 citations 489 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2011 . Peer-reviewedData sources: Zurich Open Repository and ArchiveThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of St. Thomas: UST Research OnlineArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1204498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, United Kingdom, Netherlands, United States, South Africa, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ... +2 projectsFCT| LA 1 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,DFG ,DFG| German Centre for Integrative Biodiversity Research - iDivJulia Siebert; Marie Sünnemann; Yann Hautier; Anita C. Risch; Jonathan D. Bakker; Lori Biederman; Dana M. Blumenthal; Elizabeth T. Borer; Miguel N. Bugalho; Arthur A. D. Broadbent; Maria C. Caldeira; Elsa Cleland; Kendi F. Davies; Anu Eskelinen; Nicole Hagenah; Johannes M. H. Knops; Andrew S. MacDougall; Rebecca L. McCulley; Joslin L. Moore; Sally A. Power; Jodi N. Price; Eric W. Seabloom; Rachel Standish; Carly J. Stevens; Stephan Zimmermann; Nico Eisenhauer;pmid: 38040868
pmc: PMC10692199
handle: 1893/36351 , 20.500.12876/dv6lV0Oz , 1959.7/uws:78151 , 2263/95774
pmid: 38040868
pmc: PMC10692199
handle: 1893/36351 , 20.500.12876/dv6lV0Oz , 1959.7/uws:78151 , 2263/95774
AbstractCovering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/36351Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/95774Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-023-05607-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/36351Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/95774Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-023-05607-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Argentina, Argentina, United StatesPublisher:Wiley Siddharth Bharath; Elizabeth T. Borer; Lori A. Biederman; Dana M. Blumenthal; Philip A. Fay; Laureano A. Gherardi; Johannes M. H. Knops; Andrew D. B. Leakey; Laura Yahdjian; Eric W. Seabloom;AbstractGrasslands worldwide are expected to experience an increase in extreme events such as drought, along with simultaneous increases in mineral nutrient inputs as a result of human industrial activities. These changes are likely to interact because elevated nutrient inputs may alter plant diversity and increase the sensitivity to droughts. Dividing a system’s sensitivity to drought into resistance to change during the drought and rate of recovery after the drought generates insights into different dimensions of the system’s resilience in the face of drought. Here, we examine the effects of experimental nutrient fertilization and the resulting diversity loss on the resistance to and recovery from severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, five annual grasslands in California, and eight perennial grasslands in the Great Plains. We measured rate of resistance as the change in annual aboveground biomass (ANPP) per unit change in growing season precipitation as conditions declined from normal to drought. We measured recovery as the change in ANPP during the postdrought period and the return to normal precipitation. Resistance and recovery did not vary across the 400‐mm range of mean growing season precipitation spanned by our sites in the Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistance and increased drought recovery. In the California annual grasslands, arid sites had a greater recovery postdrought than mesic sites, and nutrient addition had no consistent effects on resistance or recovery. Across all study sites, we found that predrought species richness in natural grasslands was not consistently associated with rates of resistance to or recovery from the drought, in contrast to earlier findings from experimentally assembled grassland communities. Taken together, these results suggest that human‐induced eutrophication may destabilize grassland primary production, but the effects of this may vary across regions and flora, especially between perennial and annual‐dominated grasslands.
Ecology arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United States, Belgium, France, United States, Belgium, Australia, France, FrancePublisher:Wiley Publicly fundedFunded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., FCT | LA 1 +2 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,FCT| LA 1 ,EC| IMBALANCE-P ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and modelsKevin Van Sundert; Carly J. Stevens; Johannes M. H. Knops; Martin Schütz; Risto Virtanen; Lori A. Biederman; Xavier Raynaud; Philip A. Fay; Anne Ebeling; Ian Donohue; Amandine Hansart; Andrew S. MacDougall; Christiane Roscher; Eric W. Seabloom; Harry Olde Venterink; Anita C. Risch; Elizabeth T. Borer; Glenda M. Wardle; Timothy Ohlert; Dajana Radujković; Jane A. Catford; Elizabeth H. Boughton; Maria L. Silveira; Peter D. Wragg; Michael Bahn; Sara Vicca; Erik Verbruggen; Anu Eskelinen; Anu Eskelinen; Matteo Campioli;doi: 10.1111/ele.13894
pmid: 34617374
AbstractFertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory‐driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co‐limitation by NP and micronutrients.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, Netherlands, United States, Argentina, United States, Netherlands, ArgentinaPublisher:Wiley Elizabeth T. Borer; Lori A. Biederman; Eric W. Seabloom; W. Stanley Harpole; W. Stanley Harpole; John M. Dwyer; John M. Dwyer; Marc W. Cadotte; Brent J. Danielson; Brent Mortensen; Nicole Hagenah; Pablo Luis Peri; Pablo Luis Peri; Carlos Alberto Arnillas; Juan Alberti; Yann Hautier;handle: 11336/90540 , 20.500.12876/23197
Abstract Reductions in community evenness can lead to local extinctions as dominant species exclude subordinate species; however, herbivores can prevent competitive exclusion by consuming otherwise dominant plant species, thus increasing evenness. While these predictions logically result from chronic, gradual reductions in evenness, rapid, temporary pulses of dominance may also reduce species richness. Short pulses of dominance can occur as biotic or abiotic conditions temporarily favour one or a few species, manifested as increased temporal variability (the inverse of temporal stability) in community evenness. Here, we tested whether consumers help maintain plant diversity by reducing the temporal variability in community evenness. We tested our hypothesis by reducing herbivore abundance in a detailed study of a developing, tallgrass prairie restoration. To assess the broader implications of the importance of herbivory on community evenness as well as potential mechanisms, we paired this study with a global herbivore reduction experiment. We found that herbivores maintained plant richness in a tallgrass prairie restoration by limiting temporary pulses in dominance by a single species. Dominance by an annual species in a single year was negatively associated with species richness, suggesting that short pulses of dominance may be sufficient to exclude subordinate species. The generality of this site‐level relationship was supported by the global experiment in which inter‐annual variability in evenness declined in the presence of vertebrate herbivores over timeframes ranging in length from 2 to 5 years, preventing declines in species richness. Furthermore, inter‐annual variability of community evenness was also negatively associated with pre‐treatment species richness. Synthesis. A loss or reduction of herbivores can destabilize plant communities by allowing brief periods of dominance by one or a few species, potentially triggering a feedback cycle of dominance and extinction. Such cycles may not occur immediately following the loss of herbivores, being delayed until conditions allow temporary periods of dominance by a subset of plant species.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.12821&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Argentina, South Africa, Netherlands, Netherlands, Argentina, Australia, United States, United States, United KingdomPublisher:Wiley Publicly fundedFunded by:NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ..., NSF | LTER: Multi-decadal resp... +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,FCT| LA 1Andrew S. MacDougall; Eric W. Seabloom; Nicole Hagenah; Philip A. Fay; Ramesh Laungani; Marc W. Cadotte; Laura E. Dee; Yvonne M. Buckley; Martin Schuetz; W. Stanley Harpole; W. Stanley Harpole; Peter B. Adler; Scott L. Collins; Johannes M. H. Knops; John W. Morgan; Elizabeth T. Borer; Anita C. Risch; Andy Hector; Forest Isbell; Sarah E. Hobbie; Carly J. Stevens; Jennifer Firn; Joslin L. Moore; Yann Hautier; Suzanne M. Prober; Kimberly J. Komatsu; Timothy Ohlert; Rebecca L. McCulley; Lori A. Biederman; Juan Alberti;AbstractHuman activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient‐induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5–11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient‐induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short‐term experiments may underestimate the long‐term nutrient enrichment effects on global grassland ecosystems.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 98 citations 98 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2021 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Lancaster EPrintsQueensland University of Technology: QUT ePrintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/151556/1/npp_div_feedback_2020_07_14_ecology_text_track.pdfData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 India, United States, United Kingdom, United Kingdom, United States, India, NetherlandsPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSERC, NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi...NSERC ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderAndrew S. MacDougall; Ellen Esch; Qingqing Chen; Oliver Carroll; Colin Bonner; Timothy Ohlert; Matthias Siewert; John Sulik; Anna K. Schweiger; Elizabeth T. Borer; Dilip Naidu; Sumanta Bagchi; Yann Hautier; Peter Wilfahrt; Keith Larson; Johan Olofsson; Elsa Cleland; Ranjan Muthukrishnan; Lydia O’Halloran; Juan Alberti; T. Michael Anderson; Carlos A. Arnillas; Jonathan D. Bakker; Isabel C. Barrio; Lori Biederman; Elizabeth H. Boughton; Lars A. Brudvig; Martin Bruschetti; Yvonne Buckley; Miguel N. Bugalho; Marc W. Cadotte; Maria C. Caldeira; Jane A. Catford; Carla D’Antonio; Kendi Davies; Pedro Daleo; Christopher R. Dickman; Ian Donohue; Mary Ellyn DuPre; Kenneth Elgersma; Nico Eisenhauer; Anu Eskelinen; Catalina Estrada; Philip A. Fay; Yanhao Feng; Daniel S. Gruner; Nicole Hagenah; Sylvia Haider; W. Stanley Harpole; Erika Hersch-Green; Anke Jentsch; Kevin Kirkman; Johannes M. H. Knops; Lauri Laanisto; Lucíola S. Lannes; Ramesh Laungani; Ariuntsetseg Lkhagva; Petr Macek; Jason P. Martina; Rebecca L. McCulley; Brett Melbourne; Rachel Mitchell; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Yujie Niu; Meelis Pärtel; Pablo L. Peri; Sally A. Power; Jodi N. Price; Suzanne M. Prober; Zhengwei Ren; Anita C. Risch; Nicholas G. Smith; Grégory Sonnier; Rachel J. Standish; Carly J. Stevens; Michelle Tedder; Pedro Tognetti; G. F. Veen; Risto Virtanen; Glenda M. Wardle; Elizabeth Waring; Amelia A. Wolf; Laura Yahdjian; Eric W. Seabloom;Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Netherlands, Netherlands, Argentina, India, India, United States, South Africa, Netherlands, United Kingdom, Argentina, Netherlands, NorwayPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Coordination of the ..., FCT | LA 1, NSF | LTER: Biodiversity, Multi... +1 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,FCT| LA 1 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDivMarie Spohn; Sumanta Bagchi; Lori A. Biederman; Elizabeth T. Borer; Kari Anne Bråthen; Miguel N. Bugalho; Maria C. Caldeira; Jane A. Catford; Scott L. Collins; Nico Eisenhauer; Nicole Hagenah; Sylvia Haider; Yann Hautier; Johannes M. H. Knops; Sally E. Koerner; Lauri Laanisto; Ylva Lekberg; Jason P. Martina; Holly M. Martinson; Rebecca L. McCulley; Pablo Luís Peri; Petr Macek; Sally A. Power; Anita C. Risch; Christiane Roscher; Eric W. Seabloom; Carly J. Stevens; G. F. Veen; Risto Virtanen; Laura Yahdjian;pmid: 37857640
pmc: PMC10587103
AbstractLittle is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United States, United Kingdom, United States, United States, Argentina, South Africa, Argentina, AustraliaPublisher:Wiley Funded by:NSF | LTER: Biodiversity, Multi..., NSERC, FCT | LA 1 +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSERC ,FCT| LA 1 ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersMartin Schütz; Lauren L. Sullivan; Elizabeth T. Borer; Peter B. Adler; Mahesh Sankaran; Mahesh Sankaran; Jennifer Firn; James B. Grace; Anita C. Risch; Suzanne M. Prober; Andrew S. MacDougall; Eric W. Seabloom; Lori A. Biederman; Eric M. Lind; W. Stanley Harpole; T. Michael Anderson; Pedro Daleo; Daniel M. Griffith; Rebecca L. McCulley; Nicole Hagenah; Peter D. Wragg; Carly J. Stevens; Dana M. Blumenthal;AbstractPlant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.
CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011Embargo end date: 01 Jan 2011 United States, United Kingdom, United Kingdom, United States, Switzerland, Australia, United States, United States, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | RCN: Coordination of the ...NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersYann Hautier; Anita C. Risch; Andy Hector; Jennifer Firn; Kevin P. Kirkman; Eve I. Gasarch; Andrew S. MacDougall; Eric W. Seabloom; Charles E. Mitchell; Laura B. Calabrese; Suzanne M. Prober; Nicole M. DeCrappeo; Melinda D. Smith; T. Michael Anderson; Nicole Hagenah; Nicole Hagenah; Kathryn L. Cottingham; Peter D. Wragg; Peter B. Adler; John G. Lambrinos; Jonathan D. Bakker; Daneil S. Gruner; James B. Grace; Gang Wang; Elizabeth T. Borer; Scott L. Collins; Brent Mortensen; Kendi F. Davies; Chengjin Chu; Michael J. Crawley; Carly J. Stevens; Carly J. Stevens; Martin Schuetz; Kimberly J. La Pierre; Louie H. Yang; Virginia L. Jin; Joslin L. Moore; John L. Orrock; Helmut Hillebrand; Lauren L. Sullivan; Yvonne M. Buckley; Brett A. Melbourne; Philip A. Fay; W. Stanley Harpole; Johannes M. H. Knops; Adam D. Kay; John W. Morgan; Lori A. Biederman; Paul N. Frater; Ellen I. Damschen; Lydia R. O'Halloran; Justin P. Wright; Julia A. Klein; Wei Li; Hope C. Humphries; Rebecca L. McCulley; Elsa E. Cleland; Janneke Hille Ris Lambers; Cynthia S. Brown; David A. Pyke;Standardized sampling from many sites worldwide was used to address an important ecological problem.
CORE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2011 . Peer-reviewedData sources: Zurich Open Repository and ArchiveThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of St. Thomas: UST Research OnlineArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1204498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 489 citations 489 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Zurich Open Repository and ArchiveArticle . 2011 . Peer-reviewedData sources: Zurich Open Repository and ArchiveThe University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of St. Thomas: UST Research OnlineArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1204498&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, United Kingdom, Netherlands, United States, South Africa, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, NSF | LTER: Biodiversity, Multi..., NSF | RCN: Coordination of the ... +2 projectsFCT| LA 1 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,DFG ,DFG| German Centre for Integrative Biodiversity Research - iDivJulia Siebert; Marie Sünnemann; Yann Hautier; Anita C. Risch; Jonathan D. Bakker; Lori Biederman; Dana M. Blumenthal; Elizabeth T. Borer; Miguel N. Bugalho; Arthur A. D. Broadbent; Maria C. Caldeira; Elsa Cleland; Kendi F. Davies; Anu Eskelinen; Nicole Hagenah; Johannes M. H. Knops; Andrew S. MacDougall; Rebecca L. McCulley; Joslin L. Moore; Sally A. Power; Jodi N. Price; Eric W. Seabloom; Rachel Standish; Carly J. Stevens; Stephan Zimmermann; Nico Eisenhauer;pmid: 38040868
pmc: PMC10692199
handle: 1893/36351 , 20.500.12876/dv6lV0Oz , 1959.7/uws:78151 , 2263/95774
pmid: 38040868
pmc: PMC10692199
handle: 1893/36351 , 20.500.12876/dv6lV0Oz , 1959.7/uws:78151 , 2263/95774
AbstractCovering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/36351Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/95774Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-023-05607-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/36351Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/95774Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-023-05607-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Argentina, Argentina, United StatesPublisher:Wiley Siddharth Bharath; Elizabeth T. Borer; Lori A. Biederman; Dana M. Blumenthal; Philip A. Fay; Laureano A. Gherardi; Johannes M. H. Knops; Andrew D. B. Leakey; Laura Yahdjian; Eric W. Seabloom;AbstractGrasslands worldwide are expected to experience an increase in extreme events such as drought, along with simultaneous increases in mineral nutrient inputs as a result of human industrial activities. These changes are likely to interact because elevated nutrient inputs may alter plant diversity and increase the sensitivity to droughts. Dividing a system’s sensitivity to drought into resistance to change during the drought and rate of recovery after the drought generates insights into different dimensions of the system’s resilience in the face of drought. Here, we examine the effects of experimental nutrient fertilization and the resulting diversity loss on the resistance to and recovery from severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, five annual grasslands in California, and eight perennial grasslands in the Great Plains. We measured rate of resistance as the change in annual aboveground biomass (ANPP) per unit change in growing season precipitation as conditions declined from normal to drought. We measured recovery as the change in ANPP during the postdrought period and the return to normal precipitation. Resistance and recovery did not vary across the 400‐mm range of mean growing season precipitation spanned by our sites in the Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistance and increased drought recovery. In the California annual grasslands, arid sites had a greater recovery postdrought than mesic sites, and nutrient addition had no consistent effects on resistance or recovery. Across all study sites, we found that predrought species richness in natural grasslands was not consistently associated with rates of resistance to or recovery from the drought, in contrast to earlier findings from experimentally assembled grassland communities. Taken together, these results suggest that human‐induced eutrophication may destabilize grassland primary production, but the effects of this may vary across regions and flora, especially between perennial and annual‐dominated grasslands.
Ecology arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu