- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Belgium, Italy, FrancePublisher:Wiley Funded by:NSERC, ANR | NIE, EC | BORGES +7 projectsNSERC ,ANR| NIE ,EC| BORGES ,EC| SUPRAFUNCTION ,EC| GrapheneCore3 ,UKRI| Characterisation and rational design of porous conjugated polymers for solar energy conversion ,EC| FLAG-ERA II ,ANR| UNISTRA ,EC| UHMob ,EC| EXTMOSLuca Pasquali; Luca Pasquali; Dmytro Dudenko; Marco Gobbi; Luca Ortolani; Luca Razzari; Xin Jin; Mohamed Zbiri; Andrea Liscio; Yoann Olivier; Marc-Antoine Stoeckel; Emanuele Orgiu; Emanuele Orgiu; Anne A. Y. Guilbert; Paolo Samorì; David Beljonne; Andrea Migliori; Marco Vittorio Nardi; Nicola Demitri; Fabiola Liscio; Young Gyun Jeong; Gabriele D'Avino; Vincent Lemaur;pmid: 33629772
handle: 20.500.14243/422552 , 10278/5075548 , 11380/1235816
AbstractCharge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n‐type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low‐frequency (<a‐few‐hundred cm−1), which makes it difficult to assess them experimentally. Hitherto, this has prevented the identification of clear molecular design rules to control and reduce dynamic disorder. In addition, the disorder can also be external, being controlled by the gate insulator dielectric properties. Here a comprehensive study of charge transport in two closely related n‐type molecular organic semiconductors using a combination of temperature‐dependent inelastic neutron scattering and photoelectron spectroscopy corroborated by electrical measurements, theory, and simulations is reported. Unambiguous evidence that ad hoc molecular design enables the electron charge carriers to be freed from both internal and external disorder to ultimately reach band‐like electron transport is provided.
IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 139visibility views 139 download downloads 54 Powered bymore_vert IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Belgium, Italy, FrancePublisher:Wiley Funded by:NSERC, ANR | NIE, EC | BORGES +7 projectsNSERC ,ANR| NIE ,EC| BORGES ,EC| SUPRAFUNCTION ,EC| GrapheneCore3 ,UKRI| Characterisation and rational design of porous conjugated polymers for solar energy conversion ,EC| FLAG-ERA II ,ANR| UNISTRA ,EC| UHMob ,EC| EXTMOSLuca Pasquali; Luca Pasquali; Dmytro Dudenko; Marco Gobbi; Luca Ortolani; Luca Razzari; Xin Jin; Mohamed Zbiri; Andrea Liscio; Yoann Olivier; Marc-Antoine Stoeckel; Emanuele Orgiu; Emanuele Orgiu; Anne A. Y. Guilbert; Paolo Samorì; David Beljonne; Andrea Migliori; Marco Vittorio Nardi; Nicola Demitri; Fabiola Liscio; Young Gyun Jeong; Gabriele D'Avino; Vincent Lemaur;pmid: 33629772
handle: 20.500.14243/422552 , 10278/5075548 , 11380/1235816
AbstractCharge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n‐type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low‐frequency (<a‐few‐hundred cm−1), which makes it difficult to assess them experimentally. Hitherto, this has prevented the identification of clear molecular design rules to control and reduce dynamic disorder. In addition, the disorder can also be external, being controlled by the gate insulator dielectric properties. Here a comprehensive study of charge transport in two closely related n‐type molecular organic semiconductors using a combination of temperature‐dependent inelastic neutron scattering and photoelectron spectroscopy corroborated by electrical measurements, theory, and simulations is reported. Unambiguous evidence that ad hoc molecular design enables the electron charge carriers to be freed from both internal and external disorder to ultimately reach band‐like electron transport is provided.
IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 139visibility views 139 download downloads 54 Powered bymore_vert IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022Embargo end date: 12 Jan 2023 United Kingdom, BelgiumPublisher:Springer Science and Business Media LLC Funded by:EC | SOLARX, EC | MILORD, UKRI | Control of spin and coher... +2 projectsEC| SOLARX ,EC| MILORD ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,EC| EXMOLSGillett, Alexander J; Pershin, Anton; Pandya, Raj; Feldmann, Sascha; Sneyd, Alexander J; Alvertis, Antonios M; Evans, Emrys W; Thomas, Tudor H; Cui, Lin-Song; Drummond, Bluebell H; Scholes, Gregory D; Olivier, Yoann; Rao, Akshay; Friend, Richard H; Beljonne, David;pmid: 35927434
pmc: PMC7613666
Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.
Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022Embargo end date: 12 Jan 2023 United Kingdom, BelgiumPublisher:Springer Science and Business Media LLC Funded by:EC | SOLARX, EC | MILORD, UKRI | Control of spin and coher... +2 projectsEC| SOLARX ,EC| MILORD ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,EC| EXMOLSGillett, Alexander J; Pershin, Anton; Pandya, Raj; Feldmann, Sascha; Sneyd, Alexander J; Alvertis, Antonios M; Evans, Emrys W; Thomas, Tudor H; Cui, Lin-Song; Drummond, Bluebell H; Scholes, Gregory D; Olivier, Yoann; Rao, Akshay; Friend, Richard H; Beljonne, David;pmid: 35927434
pmc: PMC7613666
Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.
Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 18 Jan 2023 Germany, United Kingdom, Belgium, Germany, SwedenPublisher:Wiley Funded by:EC | SEPOMO, UKRI | Control of spin and coher..., UKRI | Iminoboronate Polymers as... +2 projectsEC| SEPOMO ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Grüne, J; Londi, G; Gillett, AJ; Stähly, B; Lulei, S; Kotova, M; Olivier, Y; Dyakonov, V; Sperlich, A;AbstractThe great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin‐sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum‐chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB‐T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non‐geminate hole back transfer and, in blends with halogenated donors, also by spin‐orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.
Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 18 Jan 2023 Germany, United Kingdom, Belgium, Germany, SwedenPublisher:Wiley Funded by:EC | SEPOMO, UKRI | Control of spin and coher..., UKRI | Iminoboronate Polymers as... +2 projectsEC| SEPOMO ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Grüne, J; Londi, G; Gillett, AJ; Stähly, B; Lulei, S; Kotova, M; Olivier, Y; Dyakonov, V; Sperlich, A;AbstractThe great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin‐sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum‐chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB‐T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non‐geminate hole back transfer and, in blends with halogenated donors, also by spin‐orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.
Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Belgium, Italy, FrancePublisher:Wiley Funded by:NSERC, ANR | NIE, EC | BORGES +7 projectsNSERC ,ANR| NIE ,EC| BORGES ,EC| SUPRAFUNCTION ,EC| GrapheneCore3 ,UKRI| Characterisation and rational design of porous conjugated polymers for solar energy conversion ,EC| FLAG-ERA II ,ANR| UNISTRA ,EC| UHMob ,EC| EXTMOSLuca Pasquali; Luca Pasquali; Dmytro Dudenko; Marco Gobbi; Luca Ortolani; Luca Razzari; Xin Jin; Mohamed Zbiri; Andrea Liscio; Yoann Olivier; Marc-Antoine Stoeckel; Emanuele Orgiu; Emanuele Orgiu; Anne A. Y. Guilbert; Paolo Samorì; David Beljonne; Andrea Migliori; Marco Vittorio Nardi; Nicola Demitri; Fabiola Liscio; Young Gyun Jeong; Gabriele D'Avino; Vincent Lemaur;pmid: 33629772
handle: 20.500.14243/422552 , 10278/5075548 , 11380/1235816
AbstractCharge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n‐type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low‐frequency (<a‐few‐hundred cm−1), which makes it difficult to assess them experimentally. Hitherto, this has prevented the identification of clear molecular design rules to control and reduce dynamic disorder. In addition, the disorder can also be external, being controlled by the gate insulator dielectric properties. Here a comprehensive study of charge transport in two closely related n‐type molecular organic semiconductors using a combination of temperature‐dependent inelastic neutron scattering and photoelectron spectroscopy corroborated by electrical measurements, theory, and simulations is reported. Unambiguous evidence that ad hoc molecular design enables the electron charge carriers to be freed from both internal and external disorder to ultimately reach band‐like electron transport is provided.
IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 139visibility views 139 download downloads 54 Powered bymore_vert IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Belgium, Italy, FrancePublisher:Wiley Funded by:NSERC, ANR | NIE, EC | BORGES +7 projectsNSERC ,ANR| NIE ,EC| BORGES ,EC| SUPRAFUNCTION ,EC| GrapheneCore3 ,UKRI| Characterisation and rational design of porous conjugated polymers for solar energy conversion ,EC| FLAG-ERA II ,ANR| UNISTRA ,EC| UHMob ,EC| EXTMOSLuca Pasquali; Luca Pasquali; Dmytro Dudenko; Marco Gobbi; Luca Ortolani; Luca Razzari; Xin Jin; Mohamed Zbiri; Andrea Liscio; Yoann Olivier; Marc-Antoine Stoeckel; Emanuele Orgiu; Emanuele Orgiu; Anne A. Y. Guilbert; Paolo Samorì; David Beljonne; Andrea Migliori; Marco Vittorio Nardi; Nicola Demitri; Fabiola Liscio; Young Gyun Jeong; Gabriele D'Avino; Vincent Lemaur;pmid: 33629772
handle: 20.500.14243/422552 , 10278/5075548 , 11380/1235816
AbstractCharge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n‐type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low‐frequency (<a‐few‐hundred cm−1), which makes it difficult to assess them experimentally. Hitherto, this has prevented the identification of clear molecular design rules to control and reduce dynamic disorder. In addition, the disorder can also be external, being controlled by the gate insulator dielectric properties. Here a comprehensive study of charge transport in two closely related n‐type molecular organic semiconductors using a combination of temperature‐dependent inelastic neutron scattering and photoelectron spectroscopy corroborated by electrical measurements, theory, and simulations is reported. Unambiguous evidence that ad hoc molecular design enables the electron charge carriers to be freed from both internal and external disorder to ultimately reach band‐like electron transport is provided.
IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 139visibility views 139 download downloads 54 Powered bymore_vert IRIS Cnr arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202007870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022Embargo end date: 12 Jan 2023 United Kingdom, BelgiumPublisher:Springer Science and Business Media LLC Funded by:EC | SOLARX, EC | MILORD, UKRI | Control of spin and coher... +2 projectsEC| SOLARX ,EC| MILORD ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,EC| EXMOLSGillett, Alexander J; Pershin, Anton; Pandya, Raj; Feldmann, Sascha; Sneyd, Alexander J; Alvertis, Antonios M; Evans, Emrys W; Thomas, Tudor H; Cui, Lin-Song; Drummond, Bluebell H; Scholes, Gregory D; Olivier, Yoann; Rao, Akshay; Friend, Richard H; Beljonne, David;pmid: 35927434
pmc: PMC7613666
Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.
Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022Embargo end date: 12 Jan 2023 United Kingdom, BelgiumPublisher:Springer Science and Business Media LLC Funded by:EC | SOLARX, EC | MILORD, UKRI | Control of spin and coher... +2 projectsEC| SOLARX ,EC| MILORD ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,EC| EXMOLSGillett, Alexander J; Pershin, Anton; Pandya, Raj; Feldmann, Sascha; Sneyd, Alexander J; Alvertis, Antonios M; Evans, Emrys W; Thomas, Tudor H; Cui, Lin-Song; Drummond, Bluebell H; Scholes, Gregory D; Olivier, Yoann; Rao, Akshay; Friend, Richard H; Beljonne, David;pmid: 35927434
pmc: PMC7613666
Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.
Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Apollo arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-022-01321-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 18 Jan 2023 Germany, United Kingdom, Belgium, Germany, SwedenPublisher:Wiley Funded by:EC | SEPOMO, UKRI | Control of spin and coher..., UKRI | Iminoboronate Polymers as... +2 projectsEC| SEPOMO ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Grüne, J; Londi, G; Gillett, AJ; Stähly, B; Lulei, S; Kotova, M; Olivier, Y; Dyakonov, V; Sperlich, A;AbstractThe great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin‐sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum‐chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB‐T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non‐geminate hole back transfer and, in blends with halogenated donors, also by spin‐orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.
Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 18 Jan 2023 Germany, United Kingdom, Belgium, Germany, SwedenPublisher:Wiley Funded by:EC | SEPOMO, UKRI | Control of spin and coher..., UKRI | Iminoboronate Polymers as... +2 projectsEC| SEPOMO ,UKRI| Control of spin and coherence in electronic excitations in organic and hybrid organic/inorganic semiconductor structures ,UKRI| Iminoboronate Polymers as Dynamically Adaptable, Photoactive Materials ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Grüne, J; Londi, G; Gillett, AJ; Stähly, B; Lulei, S; Kotova, M; Olivier, Y; Dyakonov, V; Sperlich, A;AbstractThe great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin‐sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum‐chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB‐T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non‐geminate hole back transfer and, in blends with halogenated donors, also by spin‐orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.
Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Functional ... arrow_drop_down Publikationer från Linköpings universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedOnline-Publikations-Server der Universität WürzburgArticle . 2023License: CC BYData sources: Online-Publikations-Server der Universität Würzburgadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202212640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu