- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Del Rio, Maria Sanchez; Lucquiaud, Mathieu; Gibbins, Jon;AbstractIt is likely that a significant number of existing pulverised coal-fired power plants will be retrofitted with post-combustion capture as part of a global rollout of carbon capture and storage. Previous studies have demonstrated that the energy penalty for post-combustion carbon dioxide (CO2) capture can be greatly minimised by effective integration of the capture system with the power cycle. Nevertheless, the power output of the site is, in most cases, reduced and the volume of electricity sales would drop. For other plants, the existing steam cycle may not be able to be integrated effectively for steam extraction, or space and access around/to the steam cycle may be impossible. As an alternative to steam extraction, it is possible to retrofit existing coal plants with a gas turbine combined cycle plant (CCGT) to maintain, or even increase, the site power output. The gas turbine can be integrated to the existing coal plant in various ways to supply all the heat, or a fraction of the heat, and the power required for the capture systems. An important consideration is whether carbon emissions from both, the combined cycle and the retrofitted coal plant are captured, or from the latter only.This paper examines these different options for carbon capture retrofits to existing coal plant and presents a novel configuration with the sequential combustion of gas turbine flue gas in the existing coal boiler while capturing carbon emissions from the combustion of coal and natural gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Comparative assessment an..., UKRI | Multi-scale Energy System...UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Multi-scale Energy Systems Modelling Encompassing Renewable, Intermittent, Stored Energy and Carbon Capture and Storage (MESMERISE-CCS)Authors: Mai Bui; Paul Tait; Mathieu Lucquiaud; Niall Mac Dowell;Abstract This study combines pilot plant experiments and dynamic modelling to gain insight into the interaction between key process parameters in producing the dynamic response of an amine-based CO2 capture process. Three dynamic scenarios from the UKCCSRC PACT pilot plant are presented: (i) partial load stripping, (ii) capture plant ramping, and (iii) reboiler decoupling. These scenarios are representative of realistic flexible operation of non-baseload CCS power stations. Experimental plant data was used to validate a dynamic model developed in gCCS. In the capture plant ramping scenario, increased liquid-to-gas (L/G) ratio resulted in higher CO2 capture rate. The partial load stripping scenario demonstrated that the hot water flow directly affects reboiler temperature, which in turn, has an impact on the solvent lean loading and CO2 capture rate. The reboiler decoupling scenario demonstrates a similar relationship. Turning off the heat supply to the reboiler leads to a gradual decline in reboiler temperature, which increases solvent lean loading and reduces CO2 capture rate. The absorber column temperature profile is influenced by the degree of CO2 capture. For scenarios that result in lower solvent lean loading, the absorber temperature profile shifts to higher temperature (due to the higher CO2 capture rate).
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63965Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63965Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu;AbstractThis work is a first-of-a-kind feasibility study investigating technology options with gas/gas rotary heat exchangers for the water management in the integration of Natural Gas Combined Cycle (NGCC) plants with post-combustion carbon capture, with and without exhaust gas recirculation (EGR). A range of configurations are examined for wet and dry cooling of the flue gas entering a post- combustion capture (PCC) absorption system, and regenerative heating of the CO2-depleted flue gas prior to the power plant stack. First, this work examines the addition of a gas/gas rotary heat exchanger to transfer heat from the exhaust gas entering the absorber into the CO2-depleted gas stream leaving the absorber. It then investigates the performance of a configuration with an additional air/gas rotary heater to further reduce exhaust flue gas temperature and water consumption, and, eventually, a more compact arrangement which combined the two heaters into a single gas/gas/air heater with a trisector configuration. A thermal performance analysis was conducted for each of the previous configurations, in order to evaluate the dimensions and the operational parameters of the heaters. By replacing the direct contact cooler traditionally used in PCC technology by a dry-cooling system, a significant reduction in the overall process water usage and cooling water consumption associated to the capture plant can be achieved. The second part of this work examines the use of a similar system for NGCC plant with EGR. This strategy increases CO2 concentration in gas turbine exhaust gases and reduce O2 induced solvent degradation. In addition to the heat and water balance around the absorber column of the PCC process, an important aspect of EGR is that recirculated gas stream temperature should be as low as possible so that the gas turbine performance is not compromised. The performance of the rotary heat exchanger configurations is analysed at different recirculation ratios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Society of Civil Engineers (ASCE) Authors: Jon Gibbins; Hannah Chalmers; Matthew Leach; Mathieu Lucquiaud;Carbon capture and storage is one family of technologies that could be used to significantly reduce global carbon dioxide (C O2 ) emissions. This paper reviews the likely flexibility of power plants with postcombustion capture, with a focus on an improved characterization of the dynamic performance of power plants with C O2 capture. The literature has focused on design and optimization for steady state operation of power plants with capture, often at a single design point. When dynamic behavior is considered, it is possible that designs should be altered for best overall plant performance. Economic trade-offs between improving transport and storage scheme flexibility and constraining power plant operations should also be carefully analyzed, particularly if the captured C O2 is to be used in another process such as enhanced oil recovery. Another important aspect of real plant operation will be adhering to legislative requirements. Further work is required to identify mechanisms that allow flexible operatio...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ee.1943-7870.0000007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu119 citations 119 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ee.1943-7870.0000007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:UKRI | Gas-FACTS: Gas - Future A...UKRI| Gas-FACTS: Gas - Future Advanced Capture Technology Options - Consortium proposal by Cranfield, Edinburgh, Imperial, Leeds and SheffieldTait, Paul; Buschle, William; Ausner, Ilja; Valluri, Prashant; Wehrli, Marc; Lucquiaud, Mathieu;AbstractThe ability to operate flexibly is critical for the future implementation of carbon capture and storage (CCS) in thermal power plants. A dynamic test campaign examines the response of a CO2 absorption/desorption pilot-scale plant to realistic changes in flue gas flow rates and steam supply, representative of the operation of a Natural gas combined cycle (NGCC) plant fitted with post-combustion capture. Five scenarios, demonstrating the operational flexibility that is likely to be encountered in an energy market with significant penetration from intermittent renewables, are presented, with 30% monoethanolamine (MEA) as the absorbing solvent. It complements a wider effort on dynamic modelling of these systems where a lack of dynamic plant data has been reported.The campaign focuses on analysing critical plant parameters of the response of the pilot plant to a gas turbine shutdown, a gas turbine startup and three enhanced operational flexibility scenarios, including two for power output maximisation and one for frequency response with a rapid increase of steam supply to the reboiler. The campaign also demonstrates the use of continuous in situ solvent lean loading measurement with the use of a novel online continuous liquid sensor.It confirms that no significant barriers to flexible operation of amine post-combustion capture are found, although there remains scope for the improvement of plant response. Solvent inventory and circulation times are found to have a significant effect on capture rate during certain dynamic operations. A large solvent inventory increases total circulation times, which can result in additional time being required for the plant to return to steady state following a perturbation. The plant is forced to operate with a non-optimal capture rate while the solvent loading at the absorber inlet stabilises is identified as a potential impact.Use of interim solvent storage and continuous online measurement of solvent CO2 loading, combined with comprehensive knowledge of liquid circulation times and potential mixing effects, are suggested as methods for improving plant response to dynamic operation, thereby increasing CCS plant flexibility.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | Selective Exhaust Gas Rec..., UKRI | Adsorption Materials and ..., UKRI | Gas-FACTS: Gas - Future A...UKRI| Selective Exhaust Gas Recirculation for Carbon Capture with Gas Turbines: Integration, Intensification, Scale-up and Optimisation. ,UKRI| Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants - AMPGas ,UKRI| Gas-FACTS: Gas - Future Advanced Capture Technology Options - Consortium proposal by Cranfield, Edinburgh, Imperial, Leeds and SheffieldAuthors: Herraiz Palomino, Laura; Palfi, Erika; Sanchez Fernandez, Eva; Lucquiaud, Mathieu;A conceptual design assessment shows that the use of structured adsorbents in a regenerative adsorption wheel is technically feasible for the application of selective exhaust gas recirculation (SEGR) in combined cycle gas turbine (CCGT) power plants. As the adsorber rotates, CO2 is selectively transferred from a flue gas stream to an ambient air stream fed to the gas turbine compressor, increasing the CO2 concentration and reducing the flow rate of the fraction of the flue gases treated in a post-combustion CO2 capture system. It imposes an estimated pressure drop of 0.25 kPa, unlike a pressure drop of 10 kPa reported for selective CO2 membrane systems, preventing a significant derating of the gas turbine. An equilibrium model of a rotary adsorber with commercially available activated carbon evaluates the inventory of the adsorbent and sizes the wheel rotor. Two rotary wheels of 24 m diameter and 2 m length are required per gas turbine—heat recovery steam generator train to achieve an overall CO2 capture level of 90% in a CCGT power plant (ca. 820 MWe) with SEGR “in parallel” to the capture plant. Two to five rotary wheels are required for a configuration with SEGR “in series” to the capture plant. A reduction of 50% in the mass of the adsorbent would be possible with Zeolite 13X instead of activated carbon, yet the hydrophilicity of zeolites are detrimental to the capacity and upstream dehydration of the flue gases is required. A parametric analysis of the equilibrium properties provides guidelines for adsorbent development. It suggests the importance of balancing the affinity for CO2 to allow the regeneration of the adsorbent with air at near ambient pressure and temperature, to minimise the inventory of the adsorbent within practical limits. An adsorbent with a saturation capacity of 8 mol/kg, a heat of adsorption from 24 to 28 kJ/mol CO2 and a pre-exponential factor of the equilibrium constant from 2 × 10–6 to 9 × 10–6 kPa−1 would result in an inventory below 200 kg, i.e., approximately the limit for the use of a single rotary wheel system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2020.482708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2020.482708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United KingdomPublisher:Elsevier BV Funded by:EC | CO2QUESTEC| CO2QUESTMathieu Lucquiaud; Eva Sanchez Fernandez; Hannah Chalmers; Niall Mac Dowell; Jon Gibbins;AbstractThe inherent nature of electricity necessitates a permanent balance between generation and demand in electricity systems. This has obvious implications for the operation of CCS power plants in decarbonised electricity systems with inflexible nuclear and variable renewable supply. The low variable costs of nuclear and some intermittent renewable technology allow them to run as base-load generators and shift fossil fuel plants from base-load to mid- merit plants. CCS power plants can be expected to increasingly operate in ways to balance variations, sometimes simultaneously, in the production of some intermittent renewable technologies and variations in electricity demand, resulting in more frequent ramping and start/stop cycles. As a result, they may also operate over a wide output range to maintain the quality and security of electricity supply by providing ancillary services, e.g. capacity and energy reserve, to the electricity network. This work characterises the operating envelope, the performance and the corresponding compressed CO2 flow of coal power plants for a range of loads, with or without voluntary by-pass of the capture unit. Optimised part-load operating strategies provide novel insights into the additional capabilities of CCS power plants specifically designed for enhanced operating flexibility.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Jia Li; Mathieu Lucquiaud; Xi Liang; Hannah Chalmers; Jon Gibbins; Tim Cockerill;AbstractA consensus for the development of a low carbon economy in China is growing rapidly among Chinese energy stakeholders. But there is considerable uncertainty as to the role that carbon capture and storage (CCS) retrofit could play in this development. The State Council in China has set a target of cutting carbon dioxide emissions per unit of GDP by 40% by 2020 compared with the level for 2005. Although this provides some policy impetus for reducing carbon dioxide emissions in China, it is also important to note that over 350 GW of coal-fired power plant capacity has been built within the past five years and that these power plants are expected to operate for at least another 25 years. Because coal is an affordable and accessible fuel in China, both the China Electricity Council (CEC) and the International Energy Agency (IEA) estimates that another 300 GW of supercritical and ultra-supercritical new coalfired power plants will be constructed in the next decade to satisfy the growing energy demand of the country .But unless other options to reduce emissions can be implemented, a simple consideration of the emissions they produce suggests that some of these recently built power plants may be required to shut down within the next two decades to address Chinese and/or international climate policies. During the past five years, the national policy of ‘closing smaller and/or inefficient units to build large and more efficient units’ has been implemented not only to save energy, but also to reduce specific carbon dioxide emissions (i.e. reduced gCO2/kWh of electricity produced). Forcing early plant closure has, however, proved to be a difficult task under the institutional framework of the Chinese electricity sector, because these plants usually had not reached the end of their design lifetimes. Also it was only partially successful in the context of CO2 reduction in the sense that companies wanted to build large plants to increase electrical output and strict rules meant they could only do this by closing a specified amount of older plant. But the end result was still that more coal was burnt and hence total CO2 emissions to atmosphere increased. Retrofitting some of the existing power plants to capture CO2, which by contrast can achieve an absolute decrease in CO2 emissions to atmosphere for an analogous loss in plant output (to the closures previously enforced) is therefore, an important option to address the threat of climate change while maintaining in the meantime the country’s electricity supply from coal.A preliminary investigation of over 100 large power plants in China was conducted to determine their potential for a retrofit with CO2 capture, transport and storage. Factors assessed included geographic location, space on site, plant layout, water restriction, coal supply, efficiency, FGD status and potential access to storage sites. Based on these criteria, retrofitting prospects were evaluated and rated. It appears that about 45% of existing power plants may suffer from ‘carbon lock-in’ status, i.e. their emissions could not be abated using CCS technology, at least at ‘reasonable’ cost. Critical factors that would preclude capture retrofit are, not surprisingly, access to storage sites and unsuitable plant layout and/or space on site. Variations in other factors would affect the level of retrofitting cost, but this effect could be positive as well as negative. In principle, plants would be retrofitted in an order that reflects the extent to which these site specific factors would give higher or lower retrofit costs.The results aim to provide an overview of the potential issues that need to be considered by stakeholders, policy makers and manufacturing companies when deciding the market potential for CCS retrofit technology in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development and Evaluatio...UKRI| Development and Evaluation of Sustainable Technologies for Flexible Operation of Conventional Power Plants.T. Spitz; V. Avagyan; F. Ascui; A.R.W. Bruce; H. Chalmers; M. Lucquiaud;Abstract The flexible operation of CO2 injection wells presents significant challenges. To avoid premature degradation of wells or loss of integrity it is imperative to understand the feed flow patterns that future CO2 transportation and storage networks will face. We use a unit commitment economic dispatch (UCED) model to study CCS operating regimes in low carbon energy systems scenarios that are characterised by high shares of weather dependent renewable power generation. Using the case study of Great Britain, we determine the extent to which flexible operation of CCS plants is required, resulting in variable CO2 flows that need to be accommodated by future CO2 transportation and storage networks. We find that around 21% and 12% of the net flow rate changes over 6h-periods in the core scenario have greater amplitudes than 30% and 50% of nominal flow, respectively. When changes are averaged over two consecutive blocks of 6 h, representing the smoothing effect achievable via line-packing over a pipeline of reasonable length and diameter, around 9% of the net changes have greater amplitudes than 40% of nominal flow. Given the high and frequent fluctuations in feed flows across all considered scenarios, further research is urgently required on the capability of transportation and storage networks to accommodate variable CO2 flow rates.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Mitchell, Charlotte; Avagyan, Vitali; Chalmers, Hannah; Lucquiaud, Mathieu;Abstract The Allam Cycle is a novel oxy-combustion gas turbine power cycle with a reported net cycle efficiency of 58–60% LHV and near-zero operating emissions. An Allam Cycle process model is developed displaying a net cycle thermal efficiency (LHV) of 58.0%, a higher value than previously reported in the literature, due to the inclusion of a bypass stream heat source. Novel modes of operation are added to improve plant operational flexibility, including a temporary increase in cycle efficiency to 66.1%, with the use of liquid oxygen storage to shift the energy penalty of oxygen production. This facilitates decoupling oxygen and electricity production and operates as a form of energy storage. For the first time, a purpose-built Unit Commitment and Economic Dispatch (UCED) model is used to investigate the impact of Allam Cycle plants and of liquid oxygen storage on system costs and grid CO2 intensities, taking the illustrative case of the GB electricity system. Over a representative winter week with high net demand, a fleet of 5–15 Allam Cycle plants operates with a capacity factor of, respectively 97%-90%, reducing system costs by 2.6%–6.7% and reducing electricity grid average CO2 intensity by 7.9%–19.0%. Adding oxygen storage to these plants allows surplus renewable energy generation to be stored, thus avoiding wind curtailment. Our initial findings indicate that oxygen storage can be valuable to both to plant operators and the system operators, but also that further work is required to evaluate non-energy revenue streams from the ancillary service market to determine whether the capital expenditure of liquid oxygen storage could be justified without financial incentives.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Del Rio, Maria Sanchez; Lucquiaud, Mathieu; Gibbins, Jon;AbstractIt is likely that a significant number of existing pulverised coal-fired power plants will be retrofitted with post-combustion capture as part of a global rollout of carbon capture and storage. Previous studies have demonstrated that the energy penalty for post-combustion carbon dioxide (CO2) capture can be greatly minimised by effective integration of the capture system with the power cycle. Nevertheless, the power output of the site is, in most cases, reduced and the volume of electricity sales would drop. For other plants, the existing steam cycle may not be able to be integrated effectively for steam extraction, or space and access around/to the steam cycle may be impossible. As an alternative to steam extraction, it is possible to retrofit existing coal plants with a gas turbine combined cycle plant (CCGT) to maintain, or even increase, the site power output. The gas turbine can be integrated to the existing coal plant in various ways to supply all the heat, or a fraction of the heat, and the power required for the capture systems. An important consideration is whether carbon emissions from both, the combined cycle and the retrofitted coal plant are captured, or from the latter only.This paper examines these different options for carbon capture retrofits to existing coal plant and presents a novel configuration with the sequential combustion of gas turbine flue gas in the existing coal boiler while capturing carbon emissions from the combustion of coal and natural gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Comparative assessment an..., UKRI | Multi-scale Energy System...UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Multi-scale Energy Systems Modelling Encompassing Renewable, Intermittent, Stored Energy and Carbon Capture and Storage (MESMERISE-CCS)Authors: Mai Bui; Paul Tait; Mathieu Lucquiaud; Niall Mac Dowell;Abstract This study combines pilot plant experiments and dynamic modelling to gain insight into the interaction between key process parameters in producing the dynamic response of an amine-based CO2 capture process. Three dynamic scenarios from the UKCCSRC PACT pilot plant are presented: (i) partial load stripping, (ii) capture plant ramping, and (iii) reboiler decoupling. These scenarios are representative of realistic flexible operation of non-baseload CCS power stations. Experimental plant data was used to validate a dynamic model developed in gCCS. In the capture plant ramping scenario, increased liquid-to-gas (L/G) ratio resulted in higher CO2 capture rate. The partial load stripping scenario demonstrated that the hot water flow directly affects reboiler temperature, which in turn, has an impact on the solvent lean loading and CO2 capture rate. The reboiler decoupling scenario demonstrates a similar relationship. Turning off the heat supply to the reboiler leads to a gradual decline in reboiler temperature, which increases solvent lean loading and reduces CO2 capture rate. The absorber column temperature profile is influenced by the degree of CO2 capture. For scenarios that result in lower solvent lean loading, the absorber temperature profile shifts to higher temperature (due to the higher CO2 capture rate).
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63965Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/63965Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global InitiativeSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu;AbstractThis work is a first-of-a-kind feasibility study investigating technology options with gas/gas rotary heat exchangers for the water management in the integration of Natural Gas Combined Cycle (NGCC) plants with post-combustion carbon capture, with and without exhaust gas recirculation (EGR). A range of configurations are examined for wet and dry cooling of the flue gas entering a post- combustion capture (PCC) absorption system, and regenerative heating of the CO2-depleted flue gas prior to the power plant stack. First, this work examines the addition of a gas/gas rotary heat exchanger to transfer heat from the exhaust gas entering the absorber into the CO2-depleted gas stream leaving the absorber. It then investigates the performance of a configuration with an additional air/gas rotary heater to further reduce exhaust flue gas temperature and water consumption, and, eventually, a more compact arrangement which combined the two heaters into a single gas/gas/air heater with a trisector configuration. A thermal performance analysis was conducted for each of the previous configurations, in order to evaluate the dimensions and the operational parameters of the heaters. By replacing the direct contact cooler traditionally used in PCC technology by a dry-cooling system, a significant reduction in the overall process water usage and cooling water consumption associated to the capture plant can be achieved. The second part of this work examines the use of a similar system for NGCC plant with EGR. This strategy increases CO2 concentration in gas turbine exhaust gases and reduce O2 induced solvent degradation. In addition to the heat and water balance around the absorber column of the PCC process, an important aspect of EGR is that recirculated gas stream temperature should be as low as possible so that the gas turbine performance is not compromised. The performance of the rotary heat exchanger configurations is analysed at different recirculation ratios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Society of Civil Engineers (ASCE) Authors: Jon Gibbins; Hannah Chalmers; Matthew Leach; Mathieu Lucquiaud;Carbon capture and storage is one family of technologies that could be used to significantly reduce global carbon dioxide (C O2 ) emissions. This paper reviews the likely flexibility of power plants with postcombustion capture, with a focus on an improved characterization of the dynamic performance of power plants with C O2 capture. The literature has focused on design and optimization for steady state operation of power plants with capture, often at a single design point. When dynamic behavior is considered, it is possible that designs should be altered for best overall plant performance. Economic trade-offs between improving transport and storage scheme flexibility and constraining power plant operations should also be carefully analyzed, particularly if the captured C O2 is to be used in another process such as enhanced oil recovery. Another important aspect of real plant operation will be adhering to legislative requirements. Further work is required to identify mechanisms that allow flexible operatio...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ee.1943-7870.0000007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu119 citations 119 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)ee.1943-7870.0000007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:UKRI | Gas-FACTS: Gas - Future A...UKRI| Gas-FACTS: Gas - Future Advanced Capture Technology Options - Consortium proposal by Cranfield, Edinburgh, Imperial, Leeds and SheffieldTait, Paul; Buschle, William; Ausner, Ilja; Valluri, Prashant; Wehrli, Marc; Lucquiaud, Mathieu;AbstractThe ability to operate flexibly is critical for the future implementation of carbon capture and storage (CCS) in thermal power plants. A dynamic test campaign examines the response of a CO2 absorption/desorption pilot-scale plant to realistic changes in flue gas flow rates and steam supply, representative of the operation of a Natural gas combined cycle (NGCC) plant fitted with post-combustion capture. Five scenarios, demonstrating the operational flexibility that is likely to be encountered in an energy market with significant penetration from intermittent renewables, are presented, with 30% monoethanolamine (MEA) as the absorbing solvent. It complements a wider effort on dynamic modelling of these systems where a lack of dynamic plant data has been reported.The campaign focuses on analysing critical plant parameters of the response of the pilot plant to a gas turbine shutdown, a gas turbine startup and three enhanced operational flexibility scenarios, including two for power output maximisation and one for frequency response with a rapid increase of steam supply to the reboiler. The campaign also demonstrates the use of continuous in situ solvent lean loading measurement with the use of a novel online continuous liquid sensor.It confirms that no significant barriers to flexible operation of amine post-combustion capture are found, although there remains scope for the improvement of plant response. Solvent inventory and circulation times are found to have a significant effect on capture rate during certain dynamic operations. A large solvent inventory increases total circulation times, which can result in additional time being required for the plant to return to steady state following a perturbation. The plant is forced to operate with a non-optimal capture rate while the solvent loading at the absorber inlet stabilises is identified as a potential impact.Use of interim solvent storage and continuous online measurement of solvent CO2 loading, combined with comprehensive knowledge of liquid circulation times and potential mixing effects, are suggested as methods for improving plant response to dynamic operation, thereby increasing CCS plant flexibility.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Frontiers Media SA Funded by:UKRI | Selective Exhaust Gas Rec..., UKRI | Adsorption Materials and ..., UKRI | Gas-FACTS: Gas - Future A...UKRI| Selective Exhaust Gas Recirculation for Carbon Capture with Gas Turbines: Integration, Intensification, Scale-up and Optimisation. ,UKRI| Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants - AMPGas ,UKRI| Gas-FACTS: Gas - Future Advanced Capture Technology Options - Consortium proposal by Cranfield, Edinburgh, Imperial, Leeds and SheffieldAuthors: Herraiz Palomino, Laura; Palfi, Erika; Sanchez Fernandez, Eva; Lucquiaud, Mathieu;A conceptual design assessment shows that the use of structured adsorbents in a regenerative adsorption wheel is technically feasible for the application of selective exhaust gas recirculation (SEGR) in combined cycle gas turbine (CCGT) power plants. As the adsorber rotates, CO2 is selectively transferred from a flue gas stream to an ambient air stream fed to the gas turbine compressor, increasing the CO2 concentration and reducing the flow rate of the fraction of the flue gases treated in a post-combustion CO2 capture system. It imposes an estimated pressure drop of 0.25 kPa, unlike a pressure drop of 10 kPa reported for selective CO2 membrane systems, preventing a significant derating of the gas turbine. An equilibrium model of a rotary adsorber with commercially available activated carbon evaluates the inventory of the adsorbent and sizes the wheel rotor. Two rotary wheels of 24 m diameter and 2 m length are required per gas turbine—heat recovery steam generator train to achieve an overall CO2 capture level of 90% in a CCGT power plant (ca. 820 MWe) with SEGR “in parallel” to the capture plant. Two to five rotary wheels are required for a configuration with SEGR “in series” to the capture plant. A reduction of 50% in the mass of the adsorbent would be possible with Zeolite 13X instead of activated carbon, yet the hydrophilicity of zeolites are detrimental to the capacity and upstream dehydration of the flue gases is required. A parametric analysis of the equilibrium properties provides guidelines for adsorbent development. It suggests the importance of balancing the affinity for CO2 to allow the regeneration of the adsorbent with air at near ambient pressure and temperature, to minimise the inventory of the adsorbent within practical limits. An adsorbent with a saturation capacity of 8 mol/kg, a heat of adsorption from 24 to 28 kJ/mol CO2 and a pre-exponential factor of the equilibrium constant from 2 × 10–6 to 9 × 10–6 kPa−1 would result in an inventory below 200 kg, i.e., approximately the limit for the use of a single rotary wheel system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2020.482708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2020.482708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United KingdomPublisher:Elsevier BV Funded by:EC | CO2QUESTEC| CO2QUESTMathieu Lucquiaud; Eva Sanchez Fernandez; Hannah Chalmers; Niall Mac Dowell; Jon Gibbins;AbstractThe inherent nature of electricity necessitates a permanent balance between generation and demand in electricity systems. This has obvious implications for the operation of CCS power plants in decarbonised electricity systems with inflexible nuclear and variable renewable supply. The low variable costs of nuclear and some intermittent renewable technology allow them to run as base-load generators and shift fossil fuel plants from base-load to mid- merit plants. CCS power plants can be expected to increasingly operate in ways to balance variations, sometimes simultaneously, in the production of some intermittent renewable technologies and variations in electricity demand, resulting in more frequent ramping and start/stop cycles. As a result, they may also operate over a wide output range to maintain the quality and security of electricity supply by providing ancillary services, e.g. capacity and energy reserve, to the electricity network. This work characterises the operating envelope, the performance and the corresponding compressed CO2 flow of coal power plants for a range of loads, with or without voluntary by-pass of the capture unit. Optimised part-load operating strategies provide novel insights into the additional capabilities of CCS power plants specifically designed for enhanced operating flexibility.
Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down http://dx.doi.org/10.1016/j.eg...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Jia Li; Mathieu Lucquiaud; Xi Liang; Hannah Chalmers; Jon Gibbins; Tim Cockerill;AbstractA consensus for the development of a low carbon economy in China is growing rapidly among Chinese energy stakeholders. But there is considerable uncertainty as to the role that carbon capture and storage (CCS) retrofit could play in this development. The State Council in China has set a target of cutting carbon dioxide emissions per unit of GDP by 40% by 2020 compared with the level for 2005. Although this provides some policy impetus for reducing carbon dioxide emissions in China, it is also important to note that over 350 GW of coal-fired power plant capacity has been built within the past five years and that these power plants are expected to operate for at least another 25 years. Because coal is an affordable and accessible fuel in China, both the China Electricity Council (CEC) and the International Energy Agency (IEA) estimates that another 300 GW of supercritical and ultra-supercritical new coalfired power plants will be constructed in the next decade to satisfy the growing energy demand of the country .But unless other options to reduce emissions can be implemented, a simple consideration of the emissions they produce suggests that some of these recently built power plants may be required to shut down within the next two decades to address Chinese and/or international climate policies. During the past five years, the national policy of ‘closing smaller and/or inefficient units to build large and more efficient units’ has been implemented not only to save energy, but also to reduce specific carbon dioxide emissions (i.e. reduced gCO2/kWh of electricity produced). Forcing early plant closure has, however, proved to be a difficult task under the institutional framework of the Chinese electricity sector, because these plants usually had not reached the end of their design lifetimes. Also it was only partially successful in the context of CO2 reduction in the sense that companies wanted to build large plants to increase electrical output and strict rules meant they could only do this by closing a specified amount of older plant. But the end result was still that more coal was burnt and hence total CO2 emissions to atmosphere increased. Retrofitting some of the existing power plants to capture CO2, which by contrast can achieve an absolute decrease in CO2 emissions to atmosphere for an analogous loss in plant output (to the closures previously enforced) is therefore, an important option to address the threat of climate change while maintaining in the meantime the country’s electricity supply from coal.A preliminary investigation of over 100 large power plants in China was conducted to determine their potential for a retrofit with CO2 capture, transport and storage. Factors assessed included geographic location, space on site, plant layout, water restriction, coal supply, efficiency, FGD status and potential access to storage sites. Based on these criteria, retrofitting prospects were evaluated and rated. It appears that about 45% of existing power plants may suffer from ‘carbon lock-in’ status, i.e. their emissions could not be abated using CCS technology, at least at ‘reasonable’ cost. Critical factors that would preclude capture retrofit are, not surprisingly, access to storage sites and unsuitable plant layout and/or space on site. Variations in other factors would affect the level of retrofitting cost, but this effect could be positive as well as negative. In principle, plants would be retrofitted in an order that reflects the extent to which these site specific factors would give higher or lower retrofit costs.The results aim to provide an overview of the potential issues that need to be considered by stakeholders, policy makers and manufacturing companies when deciding the market potential for CCS retrofit technology in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | Development and Evaluatio...UKRI| Development and Evaluation of Sustainable Technologies for Flexible Operation of Conventional Power Plants.T. Spitz; V. Avagyan; F. Ascui; A.R.W. Bruce; H. Chalmers; M. Lucquiaud;Abstract The flexible operation of CO2 injection wells presents significant challenges. To avoid premature degradation of wells or loss of integrity it is imperative to understand the feed flow patterns that future CO2 transportation and storage networks will face. We use a unit commitment economic dispatch (UCED) model to study CCS operating regimes in low carbon energy systems scenarios that are characterised by high shares of weather dependent renewable power generation. Using the case study of Great Britain, we determine the extent to which flexible operation of CCS plants is required, resulting in variable CO2 flows that need to be accommodated by future CO2 transportation and storage networks. We find that around 21% and 12% of the net flow rate changes over 6h-periods in the core scenario have greater amplitudes than 30% and 50% of nominal flow, respectively. When changes are averaged over two consecutive blocks of 6 h, representing the smoothing effect achievable via line-packing over a pipeline of reasonable length and diameter, around 9% of the net changes have greater amplitudes than 40% of nominal flow. Given the high and frequent fluctuations in feed flows across all considered scenarios, further research is urgently required on the capability of transportation and storage networks to accommodate variable CO2 flow rates.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Greenhouse Gas ControlConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2018.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Authors: Mitchell, Charlotte; Avagyan, Vitali; Chalmers, Hannah; Lucquiaud, Mathieu;Abstract The Allam Cycle is a novel oxy-combustion gas turbine power cycle with a reported net cycle efficiency of 58–60% LHV and near-zero operating emissions. An Allam Cycle process model is developed displaying a net cycle thermal efficiency (LHV) of 58.0%, a higher value than previously reported in the literature, due to the inclusion of a bypass stream heat source. Novel modes of operation are added to improve plant operational flexibility, including a temporary increase in cycle efficiency to 66.1%, with the use of liquid oxygen storage to shift the energy penalty of oxygen production. This facilitates decoupling oxygen and electricity production and operates as a form of energy storage. For the first time, a purpose-built Unit Commitment and Economic Dispatch (UCED) model is used to investigate the impact of Allam Cycle plants and of liquid oxygen storage on system costs and grid CO2 intensities, taking the illustrative case of the GB electricity system. Over a representative winter week with high net demand, a fleet of 5–15 Allam Cycle plants operates with a capacity factor of, respectively 97%-90%, reducing system costs by 2.6%–6.7% and reducing electricity grid average CO2 intensity by 7.9%–19.0%. Adding oxygen storage to these plants allows surplus renewable energy generation to be stored, thus avoiding wind curtailment. Our initial findings indicate that oxygen storage can be valuable to both to plant operators and the system operators, but also that further work is required to evaluate non-energy revenue streams from the ancillary service market to determine whether the capital expenditure of liquid oxygen storage could be justified without financial incentives.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu