- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2015 DenmarkPublisher:IEEE Funded by:EC | INNWIND.EUEC| INNWIND.EUAuthors: Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech; Ferreira, Jan A.;Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages such as light weight or small iron losses. This paper is to provide a preliminary quantitative comparison of 10 MW superconducting MgB2 generator topologies from the perspective of active material. The results show that iron-cored topologies have a cheaper active material and their sizes are relatively smaller than the others.
Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Xuezhou Wang; Udai Shipurkar; Ali Haseltalab; Henk Polinder; Frans Claeys; Rudy R. Negenborn;Ship hybridization has received some interests recently in order to achieve the emission target by 2050. However, designing and optimizing a hybrid propulsion system is a complicated problem. Sizing components and optimizing energy management control are coupled with each other. This paper applies a nested double-layer optimization architecture to optimize the sizing and energy management of a hybrid offshore support vessel. Three different power sources, namely diesel engines, batteries and fuel cells, are considered which increases the complexity of the optimization problem. The optimal sizing of the components and their corresponding energy management strategies are illustrated. The effects of the operational profiles and the emission reduction targets on the hybridization design are studied for this particular type of vessel. The results prove that a small emission reduction target of about 10% can be achieved by improving the diesel engine efficiency using the batteries only while the achievement of a larger emission reduction target mainly depends on the amount of the hydrogen and/or on-shore charging electricity consumed. Some design guidelines for hybridization are derived for this particular ship which could be also valid for other vessels with similar operational profiles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3080195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3080195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:MDPI AG Jian Tan; Henk Polinder; Antonio Jarquin Laguna; Peter Wellens; Sape A. Miedema;doi: 10.3390/jmse9010052
Currently, the techno-economic performance of Wave Energy Converters (WECs) is not competitive with other renewable technologies. Size optimization could make a difference. However, the impact of sizing on the techno-economic performance of WECs still remains unclear, especially when sizing of the buoy and Power Take-Off (PTO) are considered collectively. In this paper, an optimization method for the buoy and PTO sizing is proposed for a generic heaving point absorber to reduce the Levelized Cost Of Energy (LCOE). Frequency domain modeling is used to calculate the power absorption of WECs with different buoy and PTO sizes. Force constraints are used to represent the effects of PTO sizing on the absorbed power, in which the passive and reactive control strategy are considered, respectively. A preliminary economic model is established to calculate the cost of WECs. The proposed method is implemented for three realistic sea sites, and the dependence of the optimal size of WECs on wave resources and control strategies is analyzed. The results show that PTO sizing has a limited effect on the buoy size determination, while it can reduce the LCOE by 24% to 31%. Besides, the higher mean wave power density of wave resources does not necessarily correspond to the larger optimal buoy or PTO sizes, but it contributes to the lower LCOE. In addition, the optimal PTO force limit converges at around 0.4 to 0.5 times the maximum required PTO force for the corresponding sea sites. Compared with other methods, this proposed method shows a better potential in sizing and reducing LCOE.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/1/52/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 14 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/1/52/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:MDPI AG Jian Tan; Xuezhou Wang; Henk Polinder; Antonio Jarquin Laguna; Sape A. Miedema;doi: 10.3390/jmse10091316
A crucial part of wave energy converters (WECs) is the power take-off (PTO) mechanism, and PTO sizing has been shown to have a considerable impact on the levelized cost of energy (LCOE). However, as a dominating type of PTO system in WECs, previous research pertinent to PTO sizing did not take modeling and optimization of the linear permanent magnet (PM) generator into consideration. To fill this gap, this paper provides an insight into how PTO sizing affects the performance of linear permanent magnet (PM) generators, and further the techno-economic performance of WECs. To thoroughly reveal the power production of the WEC, both hydrodynamic modeling and generator modeling are incorporated. In addition, three different methods for sizing the linear generator are applied and compared. The effect of the selection of the sizing method on the techno-economic performance of the WEC is identified. Furthermore, to realistically reflect the relevance of PTO sizing, wave resources from three European sea sites are considered in the techno-economic analysis. The dependence of PTO sizing on wave resources is demonstrated.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/9/1316/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 8 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/9/1316/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 Denmark, NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | INNWIND.EUEC| INNWIND.EUAuthors: Dong Liu; Henk Polinder; Asger Bech Abrahamsen; Jan A. Ferreira;Superconducting synchronous generators (SCSGs) are being proposed for 10-MW direct-drive wind turbines, because of their advantages of low weight and compactness. So far, however, there has not been a commonly accepted design philosophy of SCSGs and various possibilities with many tradeoffs remain for study. Partially SCSGs are considered a starting point since excessive AC losses in armature windings can be avoided. Many topologies can be applied to partially SCSGs and may significantly affect the performance indicators (PIs) of a wind turbine. Since cost of energy (CoE) is usually used as a key PI to evaluate the feasibility of an SCSG in wind turbine applications, this paper compares twelve topologies using MgB2 wires regarding the capital CoE as well as other resulting PIs. These topologies cover most possibilities for a radial-flux SCSG and four scenarios are investigated regarding the used MgB2 wire. The comparison results shows clear trends of these PIs over the twelve topologies and can be used as a reference for designing an SCSG for large direct-drive wind turbines.
IEEE Transactions on... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttp://dx.doi.org/10.1109/TASC...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2017.2668059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert IEEE Transactions on... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttp://dx.doi.org/10.1109/TASC...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2017.2668059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2008Publisher:IEEE Authors: M G de Sousa Prado; Novalio Daratha; Henk Polinder;This paper presents a first-order energy storage requirements estimation of an Archimedes wave swing park. In addition of being simple and easy to calculate, the approach has provided useful insight into the park behavior. The simulation of park output power indicated the presence of random smoothing effect. However, the signal smoothing was considered not enough. An estimation method based on first-order filter has been used to study the optimum size of energy storage. The method can also suggest an optimum maximum output power of a generator for a certain sea state.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icset.2008.4747182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icset.2008.4747182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Udai Shipurkar; Jianning Dong; Henk Polinder; Jan A. Ferreira;Modularity is promising from a view to increasing turbine availability through fault tolerant operation as well as reduced downtimes, especially for offshore wind turbines. This paper focuses on a quantitative analysis of large scale (or extreme) modularity in power electronic converters of wind turbine generator systems. It uses mathematical models to investigate the effect of the choice of module number on the availability of a converter. It further analyses the availability in conditions where increased levels of modularity lead to a reduction of failure rates in the system. The paper extends this analysis by quantifying the benefits for a 10-MW case study turbine. Finally, it concludes that extreme modularity holds merit only when it is accompanied by a reduction in failure rates.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2813402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 8 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2813402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Denmark, Norway, Netherlands, United Kingdom, NorwayPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | INNWIND.EUEC| INNWIND.EUAsger Bech Abrahamsen; Dong Liu; Niklas Magnusson; Arwyn Thomas; Ziad Azar; Ewoud Stehouwer; Ben Hendriks; Gerrit-Jan Van Zinderen; Fujin Deng; Zhe Chen; Dennis Karwatzki; Axel Mertens; Max Parker; Stephen Finney; Henk Polinder;A method for comparing the levelized cost of energy (LCoE) of different superconducting drive trains is introduced. The properties of a 10-MW MgB2 superconducting direct-drive generator and the cost break down of the nacelle components are presented and scaled up to a turbine with a rotor diameter of up to 280 m. The partial load efficiency of the generator is evaluated for a constant cooling power of 0, 50, and 100 kW, and the annual energy production is used to determine the impact on the LCoE.
CORE arrow_drop_down Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2018.2810294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 18visibility views 18 download downloads 35 Powered bymore_vert CORE arrow_drop_down Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2018.2810294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Jannis Langer; Sergio Simanjuntak; Stefan Pfenninger; Antonio Jarquin Laguna; George Lavidas; Henk Polinder; Jaco Quist; Harkunti Pertiwi Rahayu; Kornelis Blok;The current focus of offshore wind industry and academia lies on regions with strong winds, neglecting areas with mild resources. Photovoltaics' cost reductions have shown that even mild resources can be harnessed economically, especially where electricity prices are high. Here, we study the technical and economic potential of offshore wind power in Indonesia as an example of mild-resource areas, using bias-corrected ERA5 data, turbine-specific power curves, and a detailed cost model. We show that low-wind-speed turbines could produce up to 6,816 TWh/year, which is 25 times Indonesia's electricity generation in 2018 and 3 times the projected 2050 generation, and up to 166 PWh/year globally. Although not yet competitive against current offshore turbines, low-wind turbines could become a crucial piece of the global climate mitigation effort in regions with vast marine areas and high electricity prices. As low-wind-speed turbines are not yet on the market, we recommend prioritizing their development.
iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 8 Powered bymore_vert iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2015 DenmarkPublisher:IEEE Funded by:EC | INNWIND.EUEC| INNWIND.EUAuthors: Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech; Ferreira, Jan A.;To reduce the cost of energy of offshore wind energy conversion, large individual wind turbines of 10 MW or higher power levels are drawing more attention and expected to be desirable. Conventional wind generator systems would be rather large and costly if scaled up to 10 MW. Direct drive superconducting generators have been proposed to reduce the generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density. However, a superconducting machine is likely to produce an excessive torque during a short circuit because of its small reactance. An electromagnetic (EM) shield between the rotor and the stator as well as iron or non-magnetic composite (NMC) armature teeth affects the sub-transient reactance of a superconducting machine so that they play a role in the short-circuit performance of a superconducting wind generator. This paper presents a 10 MW superconducting generator design and studies the effects of material, thickness and position of an EM shield and the effects of NMC and iron armature teeth on the torque and the field current density during a three-phase short circuit at the generator terminal. One result shows that the short circuit torque is not able to be effectively reduced by varying the EM shield and the armature tooth material. The other result shows that the field current density is likely to exceed its critical value during a short circuit although the EM shield material and the armature tooth material take some effect.
Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2015 DenmarkPublisher:IEEE Funded by:EC | INNWIND.EUEC| INNWIND.EUAuthors: Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech; Ferreira, Jan A.;Large wind turbines of 10 MW or higher power levels are desirable for reducing the cost of energy of offshore wind power conversion. Conventional wind generator systems will be costly if scaled up to 10 MW due to rather large size and weight. Direct drive superconducting generators have been proposed to address the problem with generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density of an electrical machine. However, the topology to be adopted for superconducting wind generators has not yet been settled, since the high magnetic field excitation allows for lightweight non-magnetic composite materials for machine cores instead of iron. A topology would probably not be a good option for an offshore wind turbine generator if it demands a far more expensive active material cost than others, even if it has other advantages such as light weight or small iron losses. This paper is to provide a preliminary quantitative comparison of 10 MW superconducting MgB2 generator topologies from the perspective of active material. The results show that iron-cored topologies have a cheaper active material and their sizes are relatively smaller than the others.
Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Xuezhou Wang; Udai Shipurkar; Ali Haseltalab; Henk Polinder; Frans Claeys; Rudy R. Negenborn;Ship hybridization has received some interests recently in order to achieve the emission target by 2050. However, designing and optimizing a hybrid propulsion system is a complicated problem. Sizing components and optimizing energy management control are coupled with each other. This paper applies a nested double-layer optimization architecture to optimize the sizing and energy management of a hybrid offshore support vessel. Three different power sources, namely diesel engines, batteries and fuel cells, are considered which increases the complexity of the optimization problem. The optimal sizing of the components and their corresponding energy management strategies are illustrated. The effects of the operational profiles and the emission reduction targets on the hybridization design are studied for this particular type of vessel. The results prove that a small emission reduction target of about 10% can be achieved by improving the diesel engine efficiency using the batteries only while the achievement of a larger emission reduction target mainly depends on the amount of the hydrogen and/or on-shore charging electricity consumed. Some design guidelines for hybridization are derived for this particular ship which could be also valid for other vessels with similar operational profiles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3080195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 28visibility views 28 download downloads 14 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3080195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:MDPI AG Jian Tan; Henk Polinder; Antonio Jarquin Laguna; Peter Wellens; Sape A. Miedema;doi: 10.3390/jmse9010052
Currently, the techno-economic performance of Wave Energy Converters (WECs) is not competitive with other renewable technologies. Size optimization could make a difference. However, the impact of sizing on the techno-economic performance of WECs still remains unclear, especially when sizing of the buoy and Power Take-Off (PTO) are considered collectively. In this paper, an optimization method for the buoy and PTO sizing is proposed for a generic heaving point absorber to reduce the Levelized Cost Of Energy (LCOE). Frequency domain modeling is used to calculate the power absorption of WECs with different buoy and PTO sizes. Force constraints are used to represent the effects of PTO sizing on the absorbed power, in which the passive and reactive control strategy are considered, respectively. A preliminary economic model is established to calculate the cost of WECs. The proposed method is implemented for three realistic sea sites, and the dependence of the optimal size of WECs on wave resources and control strategies is analyzed. The results show that PTO sizing has a limited effect on the buoy size determination, while it can reduce the LCOE by 24% to 31%. Besides, the higher mean wave power density of wave resources does not necessarily correspond to the larger optimal buoy or PTO sizes, but it contributes to the lower LCOE. In addition, the optimal PTO force limit converges at around 0.4 to 0.5 times the maximum required PTO force for the corresponding sea sites. Compared with other methods, this proposed method shows a better potential in sizing and reducing LCOE.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/1/52/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 14 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/1/52/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9010052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:MDPI AG Jian Tan; Xuezhou Wang; Henk Polinder; Antonio Jarquin Laguna; Sape A. Miedema;doi: 10.3390/jmse10091316
A crucial part of wave energy converters (WECs) is the power take-off (PTO) mechanism, and PTO sizing has been shown to have a considerable impact on the levelized cost of energy (LCOE). However, as a dominating type of PTO system in WECs, previous research pertinent to PTO sizing did not take modeling and optimization of the linear permanent magnet (PM) generator into consideration. To fill this gap, this paper provides an insight into how PTO sizing affects the performance of linear permanent magnet (PM) generators, and further the techno-economic performance of WECs. To thoroughly reveal the power production of the WEC, both hydrodynamic modeling and generator modeling are incorporated. In addition, three different methods for sizing the linear generator are applied and compared. The effect of the selection of the sizing method on the techno-economic performance of the WEC is identified. Furthermore, to realistically reflect the relevance of PTO sizing, wave resources from three European sea sites are considered in the techno-economic analysis. The dependence of PTO sizing on wave resources is demonstrated.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/9/1316/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 8 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/9/1316/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 Denmark, NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | INNWIND.EUEC| INNWIND.EUAuthors: Dong Liu; Henk Polinder; Asger Bech Abrahamsen; Jan A. Ferreira;Superconducting synchronous generators (SCSGs) are being proposed for 10-MW direct-drive wind turbines, because of their advantages of low weight and compactness. So far, however, there has not been a commonly accepted design philosophy of SCSGs and various possibilities with many tradeoffs remain for study. Partially SCSGs are considered a starting point since excessive AC losses in armature windings can be avoided. Many topologies can be applied to partially SCSGs and may significantly affect the performance indicators (PIs) of a wind turbine. Since cost of energy (CoE) is usually used as a key PI to evaluate the feasibility of an SCSG in wind turbine applications, this paper compares twelve topologies using MgB2 wires regarding the capital CoE as well as other resulting PIs. These topologies cover most possibilities for a radial-flux SCSG and four scenarios are investigated regarding the used MgB2 wire. The comparison results shows clear trends of these PIs over the twelve topologies and can be used as a reference for designing an SCSG for large direct-drive wind turbines.
IEEE Transactions on... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttp://dx.doi.org/10.1109/TASC...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2017.2668059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert IEEE Transactions on... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2017Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttp://dx.doi.org/10.1109/TASC...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2017.2668059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2008Publisher:IEEE Authors: M G de Sousa Prado; Novalio Daratha; Henk Polinder;This paper presents a first-order energy storage requirements estimation of an Archimedes wave swing park. In addition of being simple and easy to calculate, the approach has provided useful insight into the park behavior. The simulation of park output power indicated the presence of random smoothing effect. However, the signal smoothing was considered not enough. An estimation method based on first-order filter has been used to study the optimum size of energy storage. The method can also suggest an optimum maximum output power of a generator for a certain sea state.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icset.2008.4747182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icset.2008.4747182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Udai Shipurkar; Jianning Dong; Henk Polinder; Jan A. Ferreira;Modularity is promising from a view to increasing turbine availability through fault tolerant operation as well as reduced downtimes, especially for offshore wind turbines. This paper focuses on a quantitative analysis of large scale (or extreme) modularity in power electronic converters of wind turbine generator systems. It uses mathematical models to investigate the effect of the choice of module number on the availability of a converter. It further analyses the availability in conditions where increased levels of modularity lead to a reduction of failure rates in the system. The paper extends this analysis by quantifying the benefits for a 10-MW case study turbine. Finally, it concludes that extreme modularity holds merit only when it is accompanied by a reduction in failure rates.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2813402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 8 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2018.2813402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Denmark, Norway, Netherlands, United Kingdom, NorwayPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | INNWIND.EUEC| INNWIND.EUAsger Bech Abrahamsen; Dong Liu; Niklas Magnusson; Arwyn Thomas; Ziad Azar; Ewoud Stehouwer; Ben Hendriks; Gerrit-Jan Van Zinderen; Fujin Deng; Zhe Chen; Dennis Karwatzki; Axel Mertens; Max Parker; Stephen Finney; Henk Polinder;A method for comparing the levelized cost of energy (LCoE) of different superconducting drive trains is introduced. The properties of a 10-MW MgB2 superconducting direct-drive generator and the cost break down of the nacelle components are presented and scaled up to a turbine with a rotor diameter of up to 280 m. The partial load efficiency of the generator is evaluated for a constant cooling power of 0, 50, and 100 kW, and the annual energy production is used to determine the impact on the LCoE.
CORE arrow_drop_down Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2018.2810294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 18visibility views 18 download downloads 35 Powered bymore_vert CORE arrow_drop_down Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyIEEE Transactions on Applied SuperconductivityArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2018.2810294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Jannis Langer; Sergio Simanjuntak; Stefan Pfenninger; Antonio Jarquin Laguna; George Lavidas; Henk Polinder; Jaco Quist; Harkunti Pertiwi Rahayu; Kornelis Blok;The current focus of offshore wind industry and academia lies on regions with strong winds, neglecting areas with mild resources. Photovoltaics' cost reductions have shown that even mild resources can be harnessed economically, especially where electricity prices are high. Here, we study the technical and economic potential of offshore wind power in Indonesia as an example of mild-resource areas, using bias-corrected ERA5 data, turbine-specific power curves, and a detailed cost model. We show that low-wind-speed turbines could produce up to 6,816 TWh/year, which is 25 times Indonesia's electricity generation in 2018 and 3 times the projected 2050 generation, and up to 166 PWh/year globally. Although not yet competitive against current offshore turbines, low-wind turbines could become a crucial piece of the global climate mitigation effort in regions with vast marine areas and high electricity prices. As low-wind-speed turbines are not yet on the market, we recommend prioritizing their development.
iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 8 Powered bymore_vert iScience arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Contribution for newspaper or weekly magazine 2015 DenmarkPublisher:IEEE Funded by:EC | INNWIND.EUEC| INNWIND.EUAuthors: Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech; Ferreira, Jan A.;To reduce the cost of energy of offshore wind energy conversion, large individual wind turbines of 10 MW or higher power levels are drawing more attention and expected to be desirable. Conventional wind generator systems would be rather large and costly if scaled up to 10 MW. Direct drive superconducting generators have been proposed to reduce the generator size, because the electrical machines with superconducting windings are capable of achieving a higher torque density. However, a superconducting machine is likely to produce an excessive torque during a short circuit because of its small reactance. An electromagnetic (EM) shield between the rotor and the stator as well as iron or non-magnetic composite (NMC) armature teeth affects the sub-transient reactance of a superconducting machine so that they play a role in the short-circuit performance of a superconducting wind generator. This paper presents a 10 MW superconducting generator design and studies the effects of material, thickness and position of an EM shield and the effects of NMC and iron armature teeth on the torque and the field current density during a three-phase short circuit at the generator terminal. One result shows that the short circuit torque is not able to be effectively reduced by varying the EM shield and the armature tooth material. The other result shows that the field current density is likely to exceed its critical value during a short circuit although the EM shield material and the armature tooth material take some effect.
Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Online Research Data... arrow_drop_down Online Research Database In TechnologyContribution for newspaper or weekly magazine . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/iemdc.2015.7409137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu