- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Guangxiao Hu; Xiaoming Ma; Junping Ji;doi: 10.3390/su9111942
In order to solve problems caused by climate change, countries around the world should work together to reduce GHG (greenhouse gas) emissions, especially CO2 emissions. Power demand takes up the largest proportion of final energy demand in China, so the key to achieve its goal of energy-saving and emission reduction is to reduce the carbon emissions in the power sector. Taking Shenzhen as an example, this paper proposed a stochastic optimization model incorporating power demand uncertainty to plan the carbon mitigation path of power sector between 2015 and 2030. The results show that, in order to achieve the optimal path in Shenzhen’s power sector, the carbon mitigation technologies of existing coal and gas-fired power plants will be 100% implemented. Two-thirds and remaining one-third of coal-fired power plant capacities are going to be decommissioned in 2023 and 2028, respectively. Gas-fired power, distributed photovoltaic power, waste-to-energy power and CCHP (Combined Cooling, Heating, and Power) are going to expand their capacities gradually.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/11/1942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/11/1942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Yunrong Ma; Peishi Wu; Junping Ji; Xiaoming Ma;Abstract This paper aims to examine the greenhouse gas (GHG) emission profit of the multi-crystalline (multi-Si) photovoltaic installations by conducting life cycle assessments (LCA) for both the traditional coal-fired power plants and the PV-based power plants. The GHG emission rates for both systems are 975.2 g CO 2 -eq./kWh and 36.75 g CO 2 -eq./kWh respectively, and the difference, which represents the unit GHG emission rate profit, is 938.45 g CO2-eq./kWh. The application of a 1MW PV-based power plant was followed, and the annual GHG emission profit for such a system was 2.08 x 10 9 g CO2-eq. Some further discussion was also made, indicating the sources of the data as well as the reasons for the method adoption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Siqin Xiong; Junping Ji; Junping Ji; Xiaoming Ma;Abstract Regional disparity in terms of industrial energy efficiency is noticeable in China due to the unbalanced economic progress in past decades. Analyzing the provincial industrial energy efficiency and its influencing factors is of great significance to formulate differentiated policies. To date, the influence of many social-economic factors on the industrial energy efficiency have been examined but the impact of the inter-industry structure has almost been ignored. In this paper, the slacks-based measure model incorporating undesirable output is applied to evaluate the industrial energy efficiency both at the provincial level and the sectoral level in China for the period 2010 to 2016. Then, industrial structure efficiency is introduced, which reflects the inter-industry structure and takes the sectoral-level energy efficiency into consideration. And the impact of the industrial structure efficiency on provincial industrial energy efficiency is tested by Tobit regression model. The results show that huge discrepancies of provincial industrial energy efficiency exist and the industrial structure efficiency is confirmed to be a determinative factor to the provincial industrial energy efficiency, with the coefficient of 0.525. Policy recommendations are provided for adjusting the provincial inter-industry structure and improving the industrial energy efficiency.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.01.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.01.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Xiawei Liao; Mengnan Li; Junping Ji; Junping Ji; Xiaoming Ma; Haiyi Ye;doi: 10.1002/wene.373
AbstractThe adoption of electric vehicles (EVs) is an important way to reduce air pollution and greenhouse gas emissions. The city of Shenzhen, in southern China, has focused on developing policies to encourage EV implementation over the past decade and now has the most EVs of any city in the world, including the largest e‐bus and e‐taxi fleets. This paper reviews Shenzhen's innovative incentive policies and business models with respect to the potential for other cities and regions to learn from the city's experiences. Subsidies for the purchase and use of EVs, the construction of charging facilities, and the provision of services followed an inverse U‐shaped trend that initially rose to encourage early adoption before decreasing as the market matured. Additional incentives included preferential vehicle licensing, parking privileges, and road access. Furthermore, the city adopted a business model that incentivized cooperation between third‐party financial institutions, EV manufacturers, and charging facility operators to reduce the initial financial burden and risk of EV adoption by pooling purchasing power through leasing and vehicle sharing while disassociating vehicle and battery maintenance. Although Shenzhen's experience has unique aspects that cannot easily be replicated, such as a strong financial position of the government, it offers two important lessons for other cities around the globe: (a) incentivize the whole EV value chain in order to avoid bottlenecks and (b) use innovative business models that mobilize both public and private resources by distributing both risks and rewards.This article is categorized under: Energy and Transport > Economics and Policy Energy and Transport > Economics and Policy Energy Research and Innovation > Climate and Environment
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Guangxiao Hu; Xiaoming Ma; Junping Ji; Junping Ji;Abstract Cities consume more than 67% of global primary energy, the production of which results in approximately three-quarters of global CO2 emissions, exacerbating the global warming trend and related extreme weather events and natural disasters. Therefore, it is critical for cities to use existing and new sources of energy efficiently and effectively. This paper introduces a methodology that can combine sustainable energy planning with economic analysis, proposing a form of sustainable urban energy planning that could reduce energy consumption with the minimum economic cost. Taking a postindustrial city (Shenzhen, China) as an example, this paper defines four scenarios by which to analyze future projections of energy generation and consumption from 2015 to 2030 based on the Long-range Energy Alternatives Planning System model. Also developed are Sankey maps for the energy flow from the energy supply to demand sectors for different scenarios. The results show that energy efficiency improvement and energy structure upgrade policies implemented in Shenzhen would have a significant impact on its energy system. Energy consumption is projected to increase steadily up to 2030 under each scenario except for the Peak Scenario, but with different growth rates. Electricity generation in all scenarios is supposed to expand by 2030 and sustainable electricity (such as distributed photovoltaic power, waste-to-energy power, and Combined Cooling, Heating, and Power) will play an important role in the Energy structure upgrade and Peak scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Siqin Xiong; Xiawei Liao; Xiaoming Ma; Lei Huang;pmid: 33434810
The North China Grid has the highest proportion of fossil fuel-based electricity generation in China and also suffers from severe water scarcity issues. This study uses a multi-objective optimization model to explore future configurations of generating and cooling technologies of the electric power sector in the North China Grid subject to constraints imposed by existing policies on water conservation and carbon reduction in 2030. Our findings highlight that the current carbon reduction commitments of China do not have significant impacts on the North China Grid's electric power sector development while policies in the water sector generate much larger impacts. Imposing water constraint according to the 'Three Red Line' Policy requires increasing utilization of wind power and air cooling systems, which simultaneously increases economic cost and carbon emissions compared to the business as usual scenario. Imposing enhanced carbon emission and water consumption constraints reap the co-benefits of carbon reduction and water conservation by increasing the proportion of solar PV generation to 8.21%, which increases the unit electricity cost from RMB 0.82 per kWh to RMB 1.37 per kWh. In 2030, electricity generation in the North China Grid generates 1599.88 to 1690.89 million tons (Mt) of carbon emissions under different scenarios whereas imposing water constraint reduces water consumption from 3.34 billion m3 to 1.94 billion m3.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Yu Cai; Dan Dudek; Xiaoming Ma; Jianyu Zhang; Josh Margolis; Bella Liu; Junping Ji;doi: 10.1063/1.4927001
This paper describes the progress of the research and practice on incorporating mobile sources, especially motor vehicles, into Shenzhen Emissions Trading System. Insights gained through Shenzhen's experience will provide useful insights to others that may have cause to consider the expansion of their Emissions Trading System (ETS) to include mobile sources. In order to incorporate public transportation into the ETS pilot, the city has formulated quantitative greenhouse gas emissions standards for bus and taxi companies, drawn the baselines for energy consumption and carbon emissions of public transportation, and revised local emissions trading regulations. For the further inclusion of non-public transportation vehicles, studies were made on emissions quantification, allowances allocation, non-compliance penalties, and emission reductions certification. In the future, the work will focus on legal safeguards and trading mechanisms.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4927001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4927001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Yushen Tian; Siqin Xiong; Xiaoming Ma;doi: 10.3390/su9122284
Industrial structure is one of the main factors that determine energy consumption. Based on China’s energy consumption in 2015 and the goals in 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China (The 13th Five-Year Plan), this paper established an input–output fuzzy multi-objective optimization model to estimate the potential impacts of China’s industrial structure on energy consumption in 2015. Results showed that adjustments to industrial structure could save energy by 19% (1129.17 million ton standard coal equivalent (Mtce)). Second, China’s equipment manufacturing industry has a large potential to save energy. Third, the development of several high energy intensive and high carbon intensive sectors needs to be strictly controlled, including Sector 25 (electricity, heat production, and supply industry), Sector 11 (manufacture of paper and stationery, printing), and Sector 14 (non-metallic mineral products industry). Fourth, the territory industry in China has a great potential for energy saving, while its internal structure still needs to be upgraded. Finally, we provide policy suggestions that may be adopted to reduce energy consumption by adjusting China’s industrial structure.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/12/2284/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/12/2284/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Bo Bai; Siqin Xiong; Xiaoming Ma; Xiawei Liao;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Siqin Xiong; Yi Yuan; Jia Yao; Bo Bai; Xiaoming Ma;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Guangxiao Hu; Xiaoming Ma; Junping Ji;doi: 10.3390/su9111942
In order to solve problems caused by climate change, countries around the world should work together to reduce GHG (greenhouse gas) emissions, especially CO2 emissions. Power demand takes up the largest proportion of final energy demand in China, so the key to achieve its goal of energy-saving and emission reduction is to reduce the carbon emissions in the power sector. Taking Shenzhen as an example, this paper proposed a stochastic optimization model incorporating power demand uncertainty to plan the carbon mitigation path of power sector between 2015 and 2030. The results show that, in order to achieve the optimal path in Shenzhen’s power sector, the carbon mitigation technologies of existing coal and gas-fired power plants will be 100% implemented. Two-thirds and remaining one-third of coal-fired power plant capacities are going to be decommissioned in 2023 and 2028, respectively. Gas-fired power, distributed photovoltaic power, waste-to-energy power and CCHP (Combined Cooling, Heating, and Power) are going to expand their capacities gradually.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/11/1942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/11/1942/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Yunrong Ma; Peishi Wu; Junping Ji; Xiaoming Ma;Abstract This paper aims to examine the greenhouse gas (GHG) emission profit of the multi-crystalline (multi-Si) photovoltaic installations by conducting life cycle assessments (LCA) for both the traditional coal-fired power plants and the PV-based power plants. The GHG emission rates for both systems are 975.2 g CO 2 -eq./kWh and 36.75 g CO 2 -eq./kWh respectively, and the difference, which represents the unit GHG emission rate profit, is 938.45 g CO2-eq./kWh. The application of a 1MW PV-based power plant was followed, and the annual GHG emission profit for such a system was 2.08 x 10 9 g CO2-eq. Some further discussion was also made, indicating the sources of the data as well as the reasons for the method adoption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Siqin Xiong; Junping Ji; Junping Ji; Xiaoming Ma;Abstract Regional disparity in terms of industrial energy efficiency is noticeable in China due to the unbalanced economic progress in past decades. Analyzing the provincial industrial energy efficiency and its influencing factors is of great significance to formulate differentiated policies. To date, the influence of many social-economic factors on the industrial energy efficiency have been examined but the impact of the inter-industry structure has almost been ignored. In this paper, the slacks-based measure model incorporating undesirable output is applied to evaluate the industrial energy efficiency both at the provincial level and the sectoral level in China for the period 2010 to 2016. Then, industrial structure efficiency is introduced, which reflects the inter-industry structure and takes the sectoral-level energy efficiency into consideration. And the impact of the industrial structure efficiency on provincial industrial energy efficiency is tested by Tobit regression model. The results show that huge discrepancies of provincial industrial energy efficiency exist and the industrial structure efficiency is confirmed to be a determinative factor to the provincial industrial energy efficiency, with the coefficient of 0.525. Policy recommendations are provided for adjusting the provincial inter-industry structure and improving the industrial energy efficiency.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.01.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.01.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Xiawei Liao; Mengnan Li; Junping Ji; Junping Ji; Xiaoming Ma; Haiyi Ye;doi: 10.1002/wene.373
AbstractThe adoption of electric vehicles (EVs) is an important way to reduce air pollution and greenhouse gas emissions. The city of Shenzhen, in southern China, has focused on developing policies to encourage EV implementation over the past decade and now has the most EVs of any city in the world, including the largest e‐bus and e‐taxi fleets. This paper reviews Shenzhen's innovative incentive policies and business models with respect to the potential for other cities and regions to learn from the city's experiences. Subsidies for the purchase and use of EVs, the construction of charging facilities, and the provision of services followed an inverse U‐shaped trend that initially rose to encourage early adoption before decreasing as the market matured. Additional incentives included preferential vehicle licensing, parking privileges, and road access. Furthermore, the city adopted a business model that incentivized cooperation between third‐party financial institutions, EV manufacturers, and charging facility operators to reduce the initial financial burden and risk of EV adoption by pooling purchasing power through leasing and vehicle sharing while disassociating vehicle and battery maintenance. Although Shenzhen's experience has unique aspects that cannot easily be replicated, such as a strong financial position of the government, it offers two important lessons for other cities around the globe: (a) incentivize the whole EV value chain in order to avoid bottlenecks and (b) use innovative business models that mobilize both public and private resources by distributing both risks and rewards.This article is categorized under: Energy and Transport > Economics and Policy Energy and Transport > Economics and Policy Energy Research and Innovation > Climate and Environment
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Guangxiao Hu; Xiaoming Ma; Junping Ji; Junping Ji;Abstract Cities consume more than 67% of global primary energy, the production of which results in approximately three-quarters of global CO2 emissions, exacerbating the global warming trend and related extreme weather events and natural disasters. Therefore, it is critical for cities to use existing and new sources of energy efficiently and effectively. This paper introduces a methodology that can combine sustainable energy planning with economic analysis, proposing a form of sustainable urban energy planning that could reduce energy consumption with the minimum economic cost. Taking a postindustrial city (Shenzhen, China) as an example, this paper defines four scenarios by which to analyze future projections of energy generation and consumption from 2015 to 2030 based on the Long-range Energy Alternatives Planning System model. Also developed are Sankey maps for the energy flow from the energy supply to demand sectors for different scenarios. The results show that energy efficiency improvement and energy structure upgrade policies implemented in Shenzhen would have a significant impact on its energy system. Energy consumption is projected to increase steadily up to 2030 under each scenario except for the Peak Scenario, but with different growth rates. Electricity generation in all scenarios is supposed to expand by 2030 and sustainable electricity (such as distributed photovoltaic power, waste-to-energy power, and Combined Cooling, Heating, and Power) will play an important role in the Energy structure upgrade and Peak scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.162&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Siqin Xiong; Xiawei Liao; Xiaoming Ma; Lei Huang;pmid: 33434810
The North China Grid has the highest proportion of fossil fuel-based electricity generation in China and also suffers from severe water scarcity issues. This study uses a multi-objective optimization model to explore future configurations of generating and cooling technologies of the electric power sector in the North China Grid subject to constraints imposed by existing policies on water conservation and carbon reduction in 2030. Our findings highlight that the current carbon reduction commitments of China do not have significant impacts on the North China Grid's electric power sector development while policies in the water sector generate much larger impacts. Imposing water constraint according to the 'Three Red Line' Policy requires increasing utilization of wind power and air cooling systems, which simultaneously increases economic cost and carbon emissions compared to the business as usual scenario. Imposing enhanced carbon emission and water consumption constraints reap the co-benefits of carbon reduction and water conservation by increasing the proportion of solar PV generation to 8.21%, which increases the unit electricity cost from RMB 0.82 per kWh to RMB 1.37 per kWh. In 2030, electricity generation in the North China Grid generates 1599.88 to 1690.89 million tons (Mt) of carbon emissions under different scenarios whereas imposing water constraint reduces water consumption from 3.34 billion m3 to 1.94 billion m3.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.144865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:AIP Publishing Yu Cai; Dan Dudek; Xiaoming Ma; Jianyu Zhang; Josh Margolis; Bella Liu; Junping Ji;doi: 10.1063/1.4927001
This paper describes the progress of the research and practice on incorporating mobile sources, especially motor vehicles, into Shenzhen Emissions Trading System. Insights gained through Shenzhen's experience will provide useful insights to others that may have cause to consider the expansion of their Emissions Trading System (ETS) to include mobile sources. In order to incorporate public transportation into the ETS pilot, the city has formulated quantitative greenhouse gas emissions standards for bus and taxi companies, drawn the baselines for energy consumption and carbon emissions of public transportation, and revised local emissions trading regulations. For the further inclusion of non-public transportation vehicles, studies were made on emissions quantification, allowances allocation, non-compliance penalties, and emission reductions certification. In the future, the work will focus on legal safeguards and trading mechanisms.
Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4927001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Renewable... arrow_drop_down Journal of Renewable and Sustainable EnergyArticle . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4927001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Yushen Tian; Siqin Xiong; Xiaoming Ma;doi: 10.3390/su9122284
Industrial structure is one of the main factors that determine energy consumption. Based on China’s energy consumption in 2015 and the goals in 13th Five-Year Plan for Economic and Social Development of the People’s Republic of China (The 13th Five-Year Plan), this paper established an input–output fuzzy multi-objective optimization model to estimate the potential impacts of China’s industrial structure on energy consumption in 2015. Results showed that adjustments to industrial structure could save energy by 19% (1129.17 million ton standard coal equivalent (Mtce)). Second, China’s equipment manufacturing industry has a large potential to save energy. Third, the development of several high energy intensive and high carbon intensive sectors needs to be strictly controlled, including Sector 25 (electricity, heat production, and supply industry), Sector 11 (manufacture of paper and stationery, printing), and Sector 14 (non-metallic mineral products industry). Fourth, the territory industry in China has a great potential for energy saving, while its internal structure still needs to be upgraded. Finally, we provide policy suggestions that may be adopted to reduce energy consumption by adjusting China’s industrial structure.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/12/2284/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/12/2284/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9122284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Bo Bai; Siqin Xiong; Xiaoming Ma; Xiawei Liao;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Siqin Xiong; Yi Yuan; Jia Yao; Bo Bai; Xiaoming Ma;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.125504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu