- home
- Advanced Search
- Energy Research
- 13. Climate action
- Energy Research
- 13. Climate action
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Proceedings of the National Academy of Sciences Sanil Sreekumar; Gorkem Gunbas; Gorkem Gunbas; F. Dean Toste; F. Dean Toste; Amit A. Gokhale; Alexis T. Bell; Alexis T. Bell; M. Balakrishnan; Eric R. Sacia; Eric R. Sacia; Corinne D. Scown; Corinne D. Scown;Significance The development of renewable liquid fuels and bioproducts is critical to reducing global reliance on petroleum and mitigating climate change, particularly for applications where few low-carbon alternatives exist. We combine chemical catalysis with life-cycle greenhouse gas (GHG) modeling to create a new platform for producing biobased aviation fuel and automotive lubricant base oils. The recyclable catalysts we developed are capable of converting sugar and biomass-derived alkyl methyl ketones into cyclic enones via condensation reactions. These products can subsequently be hydrodeoxygenated to create a new class of aviation fuel and lubricant candidates with superior cold flow properties, density, and viscosity that substantially reduce GHG emissions relative to conventional petroleum.
Proceedings of the N... arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508274112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 101 citations 101 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508274112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Wiley Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean;pmid: 26216783
AbstractLife‐cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop‐in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio‐ or petroleum‐based feedstocks. As a key innovation, we developed recyclable transition‐metal‐free hydrotalcite catalysts to promote the dehydrogenative cross‐coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation–aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53–79 % reduction in life‐cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel.
ChemSusChem arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaChemSusChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201500754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaChemSusChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201500754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Proceedings of the National Academy of Sciences Sanil Sreekumar; Gorkem Gunbas; Gorkem Gunbas; F. Dean Toste; F. Dean Toste; Amit A. Gokhale; Alexis T. Bell; Alexis T. Bell; M. Balakrishnan; Eric R. Sacia; Eric R. Sacia; Corinne D. Scown; Corinne D. Scown;Significance The development of renewable liquid fuels and bioproducts is critical to reducing global reliance on petroleum and mitigating climate change, particularly for applications where few low-carbon alternatives exist. We combine chemical catalysis with life-cycle greenhouse gas (GHG) modeling to create a new platform for producing biobased aviation fuel and automotive lubricant base oils. The recyclable catalysts we developed are capable of converting sugar and biomass-derived alkyl methyl ketones into cyclic enones via condensation reactions. These products can subsequently be hydrodeoxygenated to create a new class of aviation fuel and lubricant candidates with superior cold flow properties, density, and viscosity that substantially reduce GHG emissions relative to conventional petroleum.
Proceedings of the N... arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508274112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 101 citations 101 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508274112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Wiley Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean;pmid: 26216783
AbstractLife‐cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop‐in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio‐ or petroleum‐based feedstocks. As a key innovation, we developed recyclable transition‐metal‐free hydrotalcite catalysts to promote the dehydrogenative cross‐coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation–aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53–79 % reduction in life‐cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel.
ChemSusChem arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaChemSusChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201500754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaChemSusChemArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201500754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu