- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:Elsevier BV Authors: Manal AlShafi; Yusuf Bicer;Energy storage systems critically assist in the implementation of renewable energy sources. However, greenhouse gas emissions associated with the energy storage methods have received insufficient attention, especially for arid climate implementation. This paper considers three energy storage techniques that can be suitable for hot arid climates namely; compressed air energy storage, vanadium redox flow battery, and molten salt thermal storage and performs a comprehensive life cycle assessment analysis to comparatively evaluate the environmental impacts per kWh of energy. The results show that, when solar photovoltaic electricity is stored, the redox-flow battery has the highest global warming potential, corresponding to 0.121 kg CO2 eq./kWh, whereas the molten salt has the least with a value of 0.0306 kg CO2 eq./kWh. In contrast, the lowest ozone layer depletion is observed for the compressed air storage unit with a value of 7.24×10−13kg R11 eq./kWh. In sensitivity analysis, it is found that using solar photovoltaic electricity for the considered energy storage methods rather than grid electricity critically reduces the associated environmental impacts, emphasizing the importance of implementing more renewables in the grid mix. The global warming potentials of compressed air and vanadium redox flow battery decrease by 0.599 and 0.420 kg CO2 eq,/kWh, respectively in case photovoltaic electricity is stored instead of grid electricity. It is also found that the production stage of the storage systems accounts for the highest share of carbon footprint.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.09.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.09.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:Elsevier BV Authors: Manal AlShafi; Yusuf Bicer;Energy storage systems critically assist in the implementation of renewable energy sources. However, greenhouse gas emissions associated with the energy storage methods have received insufficient attention, especially for arid climate implementation. This paper considers three energy storage techniques that can be suitable for hot arid climates namely; compressed air energy storage, vanadium redox flow battery, and molten salt thermal storage and performs a comprehensive life cycle assessment analysis to comparatively evaluate the environmental impacts per kWh of energy. The results show that, when solar photovoltaic electricity is stored, the redox-flow battery has the highest global warming potential, corresponding to 0.121 kg CO2 eq./kWh, whereas the molten salt has the least with a value of 0.0306 kg CO2 eq./kWh. In contrast, the lowest ozone layer depletion is observed for the compressed air storage unit with a value of 7.24×10−13kg R11 eq./kWh. In sensitivity analysis, it is found that using solar photovoltaic electricity for the considered energy storage methods rather than grid electricity critically reduces the associated environmental impacts, emphasizing the importance of implementing more renewables in the grid mix. The global warming potentials of compressed air and vanadium redox flow battery decrease by 0.599 and 0.420 kg CO2 eq,/kWh, respectively in case photovoltaic electricity is stored instead of grid electricity. It is also found that the production stage of the storage systems accounts for the highest share of carbon footprint.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.09.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.09.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu