- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 Denmark, Portugal, Lithuania, SpainPublisher:MDPI AG Authors: Vilma Sukackė; Aida Olivia Pereira de Carvalho Guerra; Dorothea Ellinger; Vânia Carlos; +5 AuthorsVilma Sukackė; Aida Olivia Pereira de Carvalho Guerra; Dorothea Ellinger; Vânia Carlos; Saulė Petronienė; Lina Gaižiūnienė; Silvia Blanch; Anna Marbà-Tallada; Andrea Brose;doi: 10.3390/su142113955
handle: 10773/42612
Implementing active learning methods in engineering education is becoming the new norm and is seen as a prerequisite to prepare future engineers not only for their professional life, but also to tackle global issues. Teachers at higher education institutions are expected and encouraged to introduce their students to active learning experiences, such as problem-, project-, and more recently, challenge-based learning. Teachers have to shift from more traditional teacher-centered education to becoming instructional designers of student-centered education. However, instructional designers (especially novice) often interpret and adapt even well-established methods, such as problem-based learning and project-based learning, such that the intended value thereof risks being weakened. When it comes to more recent educational settings or frameworks, such as challenge-based learning, the practices are not well established yet, so there might be even more experimentation with implementation, especially drawing inspiration from other active learning methods. By conducting a systematic literature analysis of research on problem-based learning, project-based learning, and challenge-based learning, the present paper aims to shed more light on the different steps of instructional design in implementing the three methods. Based on the analysis and synthesis of empirical findings, the paper explores the instructional design stages according to the ADDIE (analysis, design, development, implementation, and evaluation) model and provides recommendations for teacher practitioners.
Sustainability arrow_drop_down Diposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABRepositório Institucional da Universidade de AveiroArticle . 2024License: CC BYData sources: Repositório Institucional da Universidade de AveiroKTUePubl (Repository of Kaunas University of Technology)Article . 2022License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142113955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down Diposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABRepositório Institucional da Universidade de AveiroArticle . 2024License: CC BYData sources: Repositório Institucional da Universidade de AveiroKTUePubl (Repository of Kaunas University of Technology)Article . 2022License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142113955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Germany, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Christian Falter; Antje Blümke; Christian A. Voigt; Kerstin Wolff; Marcel Naumann; Rudolph Reimer; Dorothea Ellinger; Dennis Eggert; Dennis Eggert; Claudia Zwikowics;AbstractConverting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep13722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep13722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 Denmark, Portugal, Lithuania, SpainPublisher:MDPI AG Authors: Vilma Sukackė; Aida Olivia Pereira de Carvalho Guerra; Dorothea Ellinger; Vânia Carlos; +5 AuthorsVilma Sukackė; Aida Olivia Pereira de Carvalho Guerra; Dorothea Ellinger; Vânia Carlos; Saulė Petronienė; Lina Gaižiūnienė; Silvia Blanch; Anna Marbà-Tallada; Andrea Brose;doi: 10.3390/su142113955
handle: 10773/42612
Implementing active learning methods in engineering education is becoming the new norm and is seen as a prerequisite to prepare future engineers not only for their professional life, but also to tackle global issues. Teachers at higher education institutions are expected and encouraged to introduce their students to active learning experiences, such as problem-, project-, and more recently, challenge-based learning. Teachers have to shift from more traditional teacher-centered education to becoming instructional designers of student-centered education. However, instructional designers (especially novice) often interpret and adapt even well-established methods, such as problem-based learning and project-based learning, such that the intended value thereof risks being weakened. When it comes to more recent educational settings or frameworks, such as challenge-based learning, the practices are not well established yet, so there might be even more experimentation with implementation, especially drawing inspiration from other active learning methods. By conducting a systematic literature analysis of research on problem-based learning, project-based learning, and challenge-based learning, the present paper aims to shed more light on the different steps of instructional design in implementing the three methods. Based on the analysis and synthesis of empirical findings, the paper explores the instructional design stages according to the ADDIE (analysis, design, development, implementation, and evaluation) model and provides recommendations for teacher practitioners.
Sustainability arrow_drop_down Diposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABRepositório Institucional da Universidade de AveiroArticle . 2024License: CC BYData sources: Repositório Institucional da Universidade de AveiroKTUePubl (Repository of Kaunas University of Technology)Article . 2022License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142113955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down Diposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABRepositório Institucional da Universidade de AveiroArticle . 2024License: CC BYData sources: Repositório Institucional da Universidade de AveiroKTUePubl (Repository of Kaunas University of Technology)Article . 2022License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142113955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Germany, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Christian Falter; Antje Blümke; Christian A. Voigt; Kerstin Wolff; Marcel Naumann; Rudolph Reimer; Dorothea Ellinger; Dennis Eggert; Dennis Eggert; Claudia Zwikowics;AbstractConverting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep13722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep13722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu