- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jingjing Feng; Yanli Zhang; Wei Song; Wei Deng; Ming Zhu; Zheng Fang; Yuqing Ye; Hua Fang; Zhenfeng Wu; Scott Lowther; Kelvin C. Jones; Xinming Wang;pmid: 33254698
Liquefied petroleum gas (LPG) as an alternative fuel is increasingly used in mainland China, few reports are however available about emissions from LPG-fueled vehicles. In this study, 26 LPG-fueled taxis in Guangzhou, south China were tested using a chassis dynamometer to obtain their emission factors of nitrogen oxides (NOx) and volatile organic compounds (VOCs) under idle and cruising (10-60 km h-1) modes. The emission factors of NOx on average increased with speed from 4.13 g kg-fuel-1 at idling to 71.1 g kg-fuel-1 at 60 km h-1 at a slope of 10.6 g kg-fuel-1 per 10 km h-1 increase in speed. Alkanes were the most abundant (71.9%) among the VOCs in the exhaust, followed by alkenes (25.2%), ethyne (2.7%), and aromatic species (0.2%). Emission factors of VOCs at idling averaged 8.24 g kg-fuel-1, higher than that of 6.23-7.36 g kg-fuel-1 when cruising at 10-60 km h-1, but their ozone formation potentials (OFPs) were lower at idling (15.8 g kg-fuel-1) than under cruising (19.1-23.8 g kg-fuel-1) largely due to higher emission of more reactive alkenes under cruising mode. Emissions of both NOx and VOCs increased significantly with mileages. Measured emission factors of NOx and reactive VOCs in this study suggested that replacing the gasoline-powered taxis with the LPG-fueled taxis with LPG-gasoline bi-fuel engines and no efficient after-treatment devices would not benefit in reducing the emissions of ozone precursors, and strengthening the emission control for LPG vehicles with dedicated LPG engines and after-treatment converters, as did in Hong Kong, could further benefit in reducing the emission of photochemically active species when using LPG as alternative fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Fang, Zheng; Deng, Wei; Wang, Xinming; He, Quanfu; Zhang, Yanli; Hu, Weiwei; Song, Wei; Zhu, Ming; Lowther, Scott; Wang, Zhaoyi; Fu, Xuewei; Hu, Qihou; Bi, Xinhui; George, Christian; Rudich, Yinon;pmid: 35660611
Straw burning comprises more than 30% of all types of burned biomass in Asia, while the estimation of the emitted aerosols' direct radiative forcing effect suffers from large uncertainties, especially when atmospheric aging processes are considered. In this study, the light absorption properties of primary and aged straw burning aerosols in open fire were characterized at 7 wavelengths ranging from 370 nm to 950 nm in a chamber. The primary rice, corn and wheat straw burning bulk aerosols together had a mass absorption efficiency (MAE) of 2.43 ± 1.36 m2 g-1 at 520 nm and an absorption Ångström exponent (AAE) of 1.93 ± 0.71, while the primary sorghum straw burning bulk aerosols were characterized by a relatively lower MAE of 0.95 ± 0.54 m2 g-1 and a higher AAE of 4.80 ± 0.68. Both the MAE and AAE of primary aerosols can be well parameterized by the (PM-BC)/BC ratio (in wt.). The MAE of black carbon (BC) increased by 11-190% during photoreactions equivalent to 16-60 h of atmospheric aging, which was positively correlated with the (PM-BC)/(BC) ratio. The MAE of organic aerosols first slightly increased or leveled off, and then decreased. Specifically, at 370 nm, the first growth/plateau stage lasted until OH exposure reached 0.47-1.29 × 1011 molecule cm-3 s, and the following period exhibited decay rates of 1.0-2.8 × 10-12 cm3 molecule-1 s-1 against the OH radical, corresponding to half-lives of 46-134 h in a typical ambient condition. During photoreactions, competition among the lensing effect, growth/bleach of organic chromophores, and particle mass and size growth complicated the evolution of the direct radiative forcing effect. It is concluded that rice and corn straw burning aerosols maintained a warming effect after aging, while the cooling effect of fresh sorghum straw burning aerosols increased with aging.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:American Chemical Society (ACS) Chunlin Li; Sidney R. Cohen; Zheng Fang; Yinon Rudich; Alexander Laskin; Steven S. Brown; Steven S. Brown; Quanfu He;Transformations of biomass burning brown carbon aerosols (BB-BrC) over their diurnal lifecycle are currently not well studied. In this study, the aging of BB tar proxy aerosols processed by NO3• under dark conditions followed by the photochemical OH• reaction and photolysis were investigated in tandem flow reactors. The results show that O3 oxidation in the dark diminishes light absorption of wood tar aerosols, resulting in higher particle single-scattering albedo (SSA). NO3• reactions augment the mass absorption coefficient (MAC) of the aerosols by a factor of 2-3 by forming secondary chromophores, such as nitroaromatic compounds (NACs) and organonitrates. Subsequent OH• oxidation and direct photolysis both decompose the organic nitrates (ONs, representing bulk functionalities of NACs and organonitrates) in the NO3•-aged wood tar aerosols, thus decreasing particle absorption. Moreover, NACs degrade faster than organonitrates by photochemical aging. The NO3•-aged wood tar aerosols are more susceptible to photolysis than to OH• reactions. The photolysis lifetimes for the ONs and for the absorbance of the NO3•-aged aerosols are on the order of hours under typical solar irradiation, while the absorption and ON lifetimes toward OH• oxidation are substantially longer. Overall, nighttime aging via NO3• reactions increases the light absorption of wood tar aerosols and shortens their absorption lifetime under daytime conditions.
Environmental Scienc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Chemical Society (ACS) Zheng Fang; Alexandra Lai; null Dongmei Cai; null Chunlin Li; Raanan Carmieli; Jianmin Chen; Xinming Wang; Yinon Rudich;Phenolic compounds are largely emitted from biomass burning (BB) and have significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of their SOA generated under different photochemical ages and NOx levels were investigated. Across explored aging conditions, oxidative potentials (OP) of Phc-SOA measured by the dithiothreitol (DTT) assay were 41.3-83.9 pmol min-1 μg-1. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. In pure water, H2O2 presented the main reactive oxygen species produced by Phc-SOA. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular ROS, possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA, but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c09903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c09903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 05 Sep 2024 GermanyPublisher:Elsevier BV Funded by:DFG, EC | EU_FT-ICR_MSDFG ,EC| EU_FT-ICR_MSLi, Chunlin; Fang, Zheng; Czech, Hendryk; Schneider, Eric; Rüger, Christopher P.; Pardo, Michal; Zimmermann, Ralf; Chen, Jianmin; Laskin, Alexandre; Rudich, Yinon;pmid: 35460777
Humic-like substances (HULIS) account for a major redox-active fraction of biomass burning organic aerosols (BBOA). During atmospheric transport, fresh acidic BB-HULIS in droplets and humid aerosols are subject to neutralization and pH-modified aging process. In this study, solutions containing HULIS isolated from wood smoldering emissions were first adjusted with NaOH and NH3 to pH values in the range of 3.6-9.0 and then aged under oxic dark conditions. Evolution of HULIS oxidative potential (OP) and total peroxide content (equivalent H2O2 concentration, H2O2eq) were measured together with the changes in solution absorbance and chemical composition. Notable immediate responses such as peroxide generation, HULIS autoxidation, and an increase in OP and light absorption were observed under alkaline conditions. Initial H2O2eq, OP, and absorption increased exponentially with pH, regardless of the alkaline species added. Dark aging further oxidized the HULIS and led to pH-dependent toxic and chemical changes, exhibiting an alkaline-facilitated initial increase followed by a decrease of OP and H2O2eq. Although highly correlated with HULIS OP, the contributions of H2O2eq to OP are minor but increased both with solution pH and dark aging time. Alkalinity-assisted autoxidation of phenolic compounds and quinoids with concomitant formation of H2O2 and other alkalinity-favored peroxide oxidation reactions are proposed here for explaining the observed HULIS OP and chemical changes in the dark. Our findings suggest that alkaline neutralization of fresh BB-HULIS represents a previously overlooked peroxide source and pathway for modifying aerosol redox-activity and composition. Additionally, these findings imply that the lung fluid neutral environment can modify the OP and peroxide content of inhaled BB-HULIS. The results also suggest that common separation protocols of HULIS using base extraction methods should be treated with caution when evaluating and comparing their composition, absorption, and relative toxicity.
Publication Server o... arrow_drop_down Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIconarp International Journal of Architecture and PlanningArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publication Server o... arrow_drop_down Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIconarp International Journal of Architecture and PlanningArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 GermanyPublisher:American Chemical Society (ACS) Funded by:EC | EU_FT-ICR_MSEC| EU_FT-ICR_MSPardo, Michal; Li, Chunlin; Fang, Zheng; Levin-Zaidman, Smadar; Dezorella, Nili; Czech, Hendryk; Martens, Patrick; Käfer, Uwe; Gröger, Thomas; Rüger, Christopher P.; Friederici, Lukas; Zimmermann, Ralf; Rudich, Yinon;Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
Chemical Research in... arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Helmholtz Zentrum München (PuSH)Article . 2021Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Iconarp International Journal of Architecture and PlanningArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrestox.1c00020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Research in... arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Helmholtz Zentrum München (PuSH)Article . 2021Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Iconarp International Journal of Architecture and PlanningArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrestox.1c00020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hendryk Czech; Daphne Meidan; Hua Fang; Xinming Wang; Thomas Gröger; Michal Pardo; Shaoxuan Xiao; Chunlin Li; Elena Hartner; Jianqiang Zeng; Ralf Zimmermann; Yinon Rudich; Alexander Laskin; Zheng Fang; Quanfu He;pmid: 34343933
Biomass burning (BB) is an important source of primary organic aerosols (POA). These POA contain a significant fraction of semivolatile organic compounds, and can release them into the gas phase during the dilution process in transport. Such evaporated compounds were termed "secondarily evaporated BB organic gases (SBB-OGs)" to distinguish them from the more studied primary emissions. SBB-OGs contribute to the formation of secondary organic aerosols (SOA) through reactions with atmospheric oxidants, and thus may influence human health and the Earth's radiation budget. In this study, tar materials collected from wood pyrolysis were taken as proxies for POA from smoldering-phase BB and were used to release SBB-OGs constantly in the lab. OH-initiated oxidation of the SBB-OGs in the absence of NOx was investigated using an oxidation flow reactor, and the chemical, optical, and toxicological properties of SOA were comprehensively characterized. Carbonyl compounds were the most abundant species in identified SOA species. Human lung epithelial cells exposed to an environmentally relevant dose of the most aged SOA did not exhibit detectable cell mortality. The oxidative potential of SOA was characterized with the dithiothreitol (DTT) assay, and its DTT consumption rate was 15.5 ± 0.5 pmol min-1 μg-1. The SOA present comparable light scattering to BB-POA, but have lower light absorption with imaginary refractive index less than 0.01 within the wavelength range of 360-600 nm. Calculations based on Mie theory show that pure airborne SOA with atmospherically relevant sizes of 50-400 nm have a cooling effect; when acting as the coating materials, these SOA can counteract the warming effect brought by airborne black carbon aerosol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2021.106801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2021.106801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jingjing Feng; Yanli Zhang; Wei Song; Wei Deng; Ming Zhu; Zheng Fang; Yuqing Ye; Hua Fang; Zhenfeng Wu; Scott Lowther; Kelvin C. Jones; Xinming Wang;pmid: 33254698
Liquefied petroleum gas (LPG) as an alternative fuel is increasingly used in mainland China, few reports are however available about emissions from LPG-fueled vehicles. In this study, 26 LPG-fueled taxis in Guangzhou, south China were tested using a chassis dynamometer to obtain their emission factors of nitrogen oxides (NOx) and volatile organic compounds (VOCs) under idle and cruising (10-60 km h-1) modes. The emission factors of NOx on average increased with speed from 4.13 g kg-fuel-1 at idling to 71.1 g kg-fuel-1 at 60 km h-1 at a slope of 10.6 g kg-fuel-1 per 10 km h-1 increase in speed. Alkanes were the most abundant (71.9%) among the VOCs in the exhaust, followed by alkenes (25.2%), ethyne (2.7%), and aromatic species (0.2%). Emission factors of VOCs at idling averaged 8.24 g kg-fuel-1, higher than that of 6.23-7.36 g kg-fuel-1 when cruising at 10-60 km h-1, but their ozone formation potentials (OFPs) were lower at idling (15.8 g kg-fuel-1) than under cruising (19.1-23.8 g kg-fuel-1) largely due to higher emission of more reactive alkenes under cruising mode. Emissions of both NOx and VOCs increased significantly with mileages. Measured emission factors of NOx and reactive VOCs in this study suggested that replacing the gasoline-powered taxis with the LPG-fueled taxis with LPG-gasoline bi-fuel engines and no efficient after-treatment devices would not benefit in reducing the emissions of ozone precursors, and strengthening the emission control for LPG vehicles with dedicated LPG engines and after-treatment converters, as did in Hong Kong, could further benefit in reducing the emission of photochemically active species when using LPG as alternative fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Fang, Zheng; Deng, Wei; Wang, Xinming; He, Quanfu; Zhang, Yanli; Hu, Weiwei; Song, Wei; Zhu, Ming; Lowther, Scott; Wang, Zhaoyi; Fu, Xuewei; Hu, Qihou; Bi, Xinhui; George, Christian; Rudich, Yinon;pmid: 35660611
Straw burning comprises more than 30% of all types of burned biomass in Asia, while the estimation of the emitted aerosols' direct radiative forcing effect suffers from large uncertainties, especially when atmospheric aging processes are considered. In this study, the light absorption properties of primary and aged straw burning aerosols in open fire were characterized at 7 wavelengths ranging from 370 nm to 950 nm in a chamber. The primary rice, corn and wheat straw burning bulk aerosols together had a mass absorption efficiency (MAE) of 2.43 ± 1.36 m2 g-1 at 520 nm and an absorption Ångström exponent (AAE) of 1.93 ± 0.71, while the primary sorghum straw burning bulk aerosols were characterized by a relatively lower MAE of 0.95 ± 0.54 m2 g-1 and a higher AAE of 4.80 ± 0.68. Both the MAE and AAE of primary aerosols can be well parameterized by the (PM-BC)/BC ratio (in wt.). The MAE of black carbon (BC) increased by 11-190% during photoreactions equivalent to 16-60 h of atmospheric aging, which was positively correlated with the (PM-BC)/(BC) ratio. The MAE of organic aerosols first slightly increased or leveled off, and then decreased. Specifically, at 370 nm, the first growth/plateau stage lasted until OH exposure reached 0.47-1.29 × 1011 molecule cm-3 s, and the following period exhibited decay rates of 1.0-2.8 × 10-12 cm3 molecule-1 s-1 against the OH radical, corresponding to half-lives of 46-134 h in a typical ambient condition. During photoreactions, competition among the lensing effect, growth/bleach of organic chromophores, and particle mass and size growth complicated the evolution of the direct radiative forcing effect. It is concluded that rice and corn straw burning aerosols maintained a warming effect after aging, while the cooling effect of fresh sorghum straw burning aerosols increased with aging.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.156431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:American Chemical Society (ACS) Chunlin Li; Sidney R. Cohen; Zheng Fang; Yinon Rudich; Alexander Laskin; Steven S. Brown; Steven S. Brown; Quanfu He;Transformations of biomass burning brown carbon aerosols (BB-BrC) over their diurnal lifecycle are currently not well studied. In this study, the aging of BB tar proxy aerosols processed by NO3• under dark conditions followed by the photochemical OH• reaction and photolysis were investigated in tandem flow reactors. The results show that O3 oxidation in the dark diminishes light absorption of wood tar aerosols, resulting in higher particle single-scattering albedo (SSA). NO3• reactions augment the mass absorption coefficient (MAC) of the aerosols by a factor of 2-3 by forming secondary chromophores, such as nitroaromatic compounds (NACs) and organonitrates. Subsequent OH• oxidation and direct photolysis both decompose the organic nitrates (ONs, representing bulk functionalities of NACs and organonitrates) in the NO3•-aged wood tar aerosols, thus decreasing particle absorption. Moreover, NACs degrade faster than organonitrates by photochemical aging. The NO3•-aged wood tar aerosols are more susceptible to photolysis than to OH• reactions. The photolysis lifetimes for the ONs and for the absorbance of the NO3•-aged aerosols are on the order of hours under typical solar irradiation, while the absorption and ON lifetimes toward OH• oxidation are substantially longer. Overall, nighttime aging via NO3• reactions increases the light absorption of wood tar aerosols and shortens their absorption lifetime under daytime conditions.
Environmental Scienc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c04310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Chemical Society (ACS) Zheng Fang; Alexandra Lai; null Dongmei Cai; null Chunlin Li; Raanan Carmieli; Jianmin Chen; Xinming Wang; Yinon Rudich;Phenolic compounds are largely emitted from biomass burning (BB) and have significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of their SOA generated under different photochemical ages and NOx levels were investigated. Across explored aging conditions, oxidative potentials (OP) of Phc-SOA measured by the dithiothreitol (DTT) assay were 41.3-83.9 pmol min-1 μg-1. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. In pure water, H2O2 presented the main reactive oxygen species produced by Phc-SOA. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular ROS, possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA, but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c09903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c09903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 05 Sep 2024 GermanyPublisher:Elsevier BV Funded by:DFG, EC | EU_FT-ICR_MSDFG ,EC| EU_FT-ICR_MSLi, Chunlin; Fang, Zheng; Czech, Hendryk; Schneider, Eric; Rüger, Christopher P.; Pardo, Michal; Zimmermann, Ralf; Chen, Jianmin; Laskin, Alexandre; Rudich, Yinon;pmid: 35460777
Humic-like substances (HULIS) account for a major redox-active fraction of biomass burning organic aerosols (BBOA). During atmospheric transport, fresh acidic BB-HULIS in droplets and humid aerosols are subject to neutralization and pH-modified aging process. In this study, solutions containing HULIS isolated from wood smoldering emissions were first adjusted with NaOH and NH3 to pH values in the range of 3.6-9.0 and then aged under oxic dark conditions. Evolution of HULIS oxidative potential (OP) and total peroxide content (equivalent H2O2 concentration, H2O2eq) were measured together with the changes in solution absorbance and chemical composition. Notable immediate responses such as peroxide generation, HULIS autoxidation, and an increase in OP and light absorption were observed under alkaline conditions. Initial H2O2eq, OP, and absorption increased exponentially with pH, regardless of the alkaline species added. Dark aging further oxidized the HULIS and led to pH-dependent toxic and chemical changes, exhibiting an alkaline-facilitated initial increase followed by a decrease of OP and H2O2eq. Although highly correlated with HULIS OP, the contributions of H2O2eq to OP are minor but increased both with solution pH and dark aging time. Alkalinity-assisted autoxidation of phenolic compounds and quinoids with concomitant formation of H2O2 and other alkalinity-favored peroxide oxidation reactions are proposed here for explaining the observed HULIS OP and chemical changes in the dark. Our findings suggest that alkaline neutralization of fresh BB-HULIS represents a previously overlooked peroxide source and pathway for modifying aerosol redox-activity and composition. Additionally, these findings imply that the lung fluid neutral environment can modify the OP and peroxide content of inhaled BB-HULIS. The results also suggest that common separation protocols of HULIS using base extraction methods should be treated with caution when evaluating and comparing their composition, absorption, and relative toxicity.
Publication Server o... arrow_drop_down Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIconarp International Journal of Architecture and PlanningArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publication Server o... arrow_drop_down Publication Server of Helmholtz Zentrum München (PuSH)Article . 2022Data sources: Publication Server of Helmholtz Zentrum München (PuSH)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefIconarp International Journal of Architecture and PlanningArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 GermanyPublisher:American Chemical Society (ACS) Funded by:EC | EU_FT-ICR_MSEC| EU_FT-ICR_MSPardo, Michal; Li, Chunlin; Fang, Zheng; Levin-Zaidman, Smadar; Dezorella, Nili; Czech, Hendryk; Martens, Patrick; Käfer, Uwe; Gröger, Thomas; Rüger, Christopher P.; Friederici, Lukas; Zimmermann, Ralf; Rudich, Yinon;Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
Chemical Research in... arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Helmholtz Zentrum München (PuSH)Article . 2021Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Iconarp International Journal of Architecture and PlanningArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrestox.1c00020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Research in... arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Publication Server of Helmholtz Zentrum München (PuSH)Article . 2021Data sources: Publication Server of Helmholtz Zentrum München (PuSH)Iconarp International Journal of Architecture and PlanningArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemrestox.1c00020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Hendryk Czech; Daphne Meidan; Hua Fang; Xinming Wang; Thomas Gröger; Michal Pardo; Shaoxuan Xiao; Chunlin Li; Elena Hartner; Jianqiang Zeng; Ralf Zimmermann; Yinon Rudich; Alexander Laskin; Zheng Fang; Quanfu He;pmid: 34343933
Biomass burning (BB) is an important source of primary organic aerosols (POA). These POA contain a significant fraction of semivolatile organic compounds, and can release them into the gas phase during the dilution process in transport. Such evaporated compounds were termed "secondarily evaporated BB organic gases (SBB-OGs)" to distinguish them from the more studied primary emissions. SBB-OGs contribute to the formation of secondary organic aerosols (SOA) through reactions with atmospheric oxidants, and thus may influence human health and the Earth's radiation budget. In this study, tar materials collected from wood pyrolysis were taken as proxies for POA from smoldering-phase BB and were used to release SBB-OGs constantly in the lab. OH-initiated oxidation of the SBB-OGs in the absence of NOx was investigated using an oxidation flow reactor, and the chemical, optical, and toxicological properties of SOA were comprehensively characterized. Carbonyl compounds were the most abundant species in identified SOA species. Human lung epithelial cells exposed to an environmentally relevant dose of the most aged SOA did not exhibit detectable cell mortality. The oxidative potential of SOA was characterized with the dithiothreitol (DTT) assay, and its DTT consumption rate was 15.5 ± 0.5 pmol min-1 μg-1. The SOA present comparable light scattering to BB-POA, but have lower light absorption with imaginary refractive index less than 0.01 within the wavelength range of 360-600 nm. Calculations based on Mie theory show that pure airborne SOA with atmospherically relevant sizes of 50-400 nm have a cooling effect; when acting as the coating materials, these SOA can counteract the warming effect brought by airborne black carbon aerosol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2021.106801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2021.106801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu